Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,071,295 papers

Msh2 ATPase activity is essential for somatic hypermutation at a-T basepairs and for efficient class switch recombination.

  • Alberto Martin‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase-mediated cytidine deamination of immunoglobulin genes. MutS homologue (Msh) 2-/- mice have reduced A-T mutations and CSR. This suggests that Msh2 may play a role in repairing activation-induced cytidine deaminase-generated G-U mismatches. However, because Msh2 not only initiates mismatch repair but also has other functions, such as signaling for apoptosis, it is not known which activity of Msh2 is responsible for the effects observed, and consequently, many models have been proposed. To further dissect the role of Msh2 in SHM and CSR, mice with a "knockin" mutation in the Msh2 gene that inactivates the adenosine triphosphatase domain were examined. This mutation (i.e., Msh2G674A), which does not affect apoptosis signaling, allows mismatches to be recognized but prevents Msh2 from initiating mismatch repair. Here, we show that, similar to Msh2-/- mice, SHM in Msh2G674A mice is biased toward G-C mutations. However, CSR is partially reduced, and switch junctions are more similar to those of postmeiotic segregation 2-/- mice than to Msh2-/- mice. These results indicate that Msh2 adenosine triphosphatase activity is required for A-T mutations, and suggest that Msh2 has more than one role in CSR.


An Application of Molecular Genotyping in Mice.

  • Lara A. Underkoffler‎ et al.
  • Biological procedures online‎
  • 2003‎

Microsatellite markers are simple sequence repeats within the mammalian genome that can be used for identifying disease loci, mapping genes of interest as well as studying segregation patterns related to meiotic nondisjunction. Different strains of mice have variable CA repeat lengths and PCR based methods can be used to identify them, thus allowing for specific genotypes to be assigned. Molecular genotyping offers such identification at any developmental stage, which allows for a broad range of anomalies to be studied. We studied chromosomal segregation in relation to nondisjunction in early-gestation mouse embryos using molecular genotyping. Information on the parental origin as well as the number of chromosomes a given progeny carried was obtained in our analysis.


Directed neuronal differentiation of human embryonic stem cells.

  • Thomas C Schulz‎ et al.
  • BMC neuroscience‎
  • 2003‎

We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs) to neural precursors and neurons.HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII).


The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn.

  • Isobel J Lever‎ et al.
  • Molecular and cellular neurosciences‎
  • 2003‎

The stimulation of C-fiber sensory neurons is known to induce activation of the ERK MAP kinase signaling pathway in the spinal cord dorsal horn. In this study we have elucidated some of the signaling components of C-fiber transmission responsible for ERK activation. Using an in vitro slice preparation of the mouse spinal cord dorsal horn, we compared the release of substance P (SP) and BDNF with the activation of ERK in postsynaptic neurons. We observed that primary afferent stimulation recruiting C-fibers was required for both SP and BDNF release and ERK activation in post-synaptic dorsal horn neurons. Glutamate transmission via NMDA and mGluR1 but not AMPA receptors was critical to this ERK activation. BDNF signaling via TrkB receptors but not SP signaling via NK(1) were also involved in ERK recruitment. In conclusion, glutamate and BDNF are the important C-fiber signaling components for ERK activation in dorsal horn neurons.


Identification of Taxreb107 as a lactogenic hormone responsive gene in mammary epithelial cells.

  • Sergio Wittlin‎ et al.
  • Biochimica et biophysica acta‎
  • 2003‎

Mammary gland development and differentiation is regulated by a number of growth factors and hormones. Milk protein gene expression represents a hallmark of functional mammary epithelial differentiation and is coordinated by the lactogenic hormone prolactin and glucocorticoids. To date, few 'early-response' genes transcriptionally activated by lactogenic hormones have been described. We have used representational difference analysis (RDA) to search for lactogenic-responsive genes in SCp2 mouse mammary epithelial cells. One of the cDNAs identified encoded the DNA-binding protein Taxreb107, originally identified as a HTLV-I Tax responsive element binding protein. Increased Taxreb107 expression was confirmed following prolactin and dexamethasone-induced differentiation of SCp2 and HC11 mammary epithelial cells. Taxreb107 RNA levels were developmentally regulated in the mouse mammary gland, where levels increased substantially during mid- and late pregnancy and persisted during lactation. Overexpression of an antisense Taxreb107 cDNA construct or antisense oligonucleotide in HC11 mammary epithelial cells attenuated milk protein gene expression following prolactin and dexamethasone treatment. These findings indicate a role for Taxreb107 as a lactogenic hormone-responsive gene during differentiation of the mammary gland.


A comparison of bayesian methods for haplotype reconstruction from population genotype data.

  • Matthew Stephens‎ et al.
  • American journal of human genetics‎
  • 2003‎

In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from genotype data in a population sample. We review the methods, emphasizing the differences between them in terms of both the models ("priors") they use and the computational strategies they employ. We introduce a new algorithm that combines the modeling strategy of one method with the computational strategies of another. In comparisons using real and simulated data, this new algorithm outperforms all three existing methods. The new algorithm is included in the software package PHASE, version 2.0, available online (http://www.stat.washington.edu/stephens/software.html).


Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB.

  • Puneet Chopra‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

The regulation of cellular processes by the modulation of protein phosphorylation/dephosphorylation is fundamental to a large number of processes in living organisms. These processes are carried out by specific protein kinases and phosphatases. In this study, a previously uncharacterized gene (Rv0018c) of Mycobacterium tuberculosis, designated as mycobacterial Ser/Thr phosphatase (mstp), was cloned, expressed in Escherichia coli, and purified as a histidine-tagged protein. Purified protein (Mstp) dephosphorylated the phosphorylated Ser/Thr residues of myelin basic protein (MBP), histone, and casein but failed to dephosphorylate phospho-tyrosine residue of these substrates, suggesting that this phosphatase is specific for Ser/Thr residues. It has been suggested that mstp is a part of a gene cluster that also includes two Ser/Thr kinases pknA and pknB. We show that Mstp is a trans-membrane protein that dephosphorylates phosphorylated PknA and PknB. Southern blot analysis revealed that mstp is absent in the fast growing saprophytes Mycobacterium smegmatis and Mycobacterium fortuitum. PknA has been shown, whereas PknB has been proposed to play a role in cell division. The presence of mstp in slow growing mycobacterial species, its trans-membrane localization, and ability to dephosphorylate phosphorylated PknA and PknB implicates that Mstp may play a role in regulating cell division in M. tuberculosis.


Expression of functional mu-opioid receptors in human osteoarthritic cartilage and chondrocytes.

  • Jan Elvenes‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

There is evidence of effects of morphine on cell proliferation and intraarticular morphine produces analgesia and has an anti-inflammatory effect in chronic arthritis. The effects of opioids are mediated through the G-protein-coupled receptors affecting the cAMP pathway. We demonstrated that human osteoarthritic cartilage and cultured chondrocytes possess the mu-opioid receptor. The presence of the receptor was shown by immunodetection, polymerase chain reaction, and Western blotting. Stimulation of chondrocytes with beta-endorphin resulted in decreased phosphorylation of the transcription factor cAMP responsive element binding protein (CREB). The effect was reversed by naltrexone. The obtained results indicate that in human articular chondrocytes opioids affect, via the mu-opioid receptor, the transcription factor CREB which in turn can cause subsequent changes in gene expression.


IGF-I stimulates IL-8 production in the promyelocytic cell line HL-60 through activation of extracellular signal-regulated protein kinase.

  • Ron Kooijman‎ et al.
  • Cellular signalling‎
  • 2003‎

Interleukin (IL)-8 serves as a major chemoattractant for neutrophils and has also been proposed to affect cancer progression. In the present study, we show that IGF-I stimulates IL-8 mRNA expression and IL-8 secretion in the leukemic cell line HL-60. Stimulation of IL-8 expression was completely attenuated by two inhibitors of mitogen-activated protein kinase (MAPK) kinase (MEK), which phosphorylates the MAPKs extracellular-regulated kinase (ERK)1 and ERK2, and by the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. In contrast, inhibitors of p38 MAPK and phosphatidylinositol-3 kinase (PI3K) did not abrogate the effect of IGF-I. We also show that IGF-I stimulates the activation of ERK1 and ERK2, but we could not detect any effect of IGF-I on the phosphorylation of p38, JNK(p46) or JNK(p54). Collectively, our results suggest that basal JNK activity and activation of the MEK-ERK pathway are required for upregulation of IL-8 by IGF-I in HL-60 cells.


Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla.

  • John Ciriello‎ et al.
  • Brain research‎
  • 2003‎

Intracisternal injections of hypocretin-1 (hcrt-1) have been shown to elicit sympathoexciatory responses. However, the location of central sites that may mediate these cardiovascular effects have not been clearly elucidated. This study was done in male Wistar rats to investigate the effects of microinjections of hcrt-1 into the rostral ventromedial medulla (RVMM) on mean arterial pressure (MAP), heart rate (HR) and the arterial baroreflex. An initial series of experiments was done to provide a detailed mapping of the location of hcrt-1- and hcrt-1 receptors (hcrtR-1)-like immunoreactivity (i.r.) in the RVMM region. Hcrt-1 and hcrtR-1 ir were found throughout the RVMM region, but primarily within the magnocellular reticular nucleus and the adjacent nucleus paragigantocellularis lateralis. In the second series, this region containing hcrt-1 and hcrtR-1 ir was explored for sites that elicited changes in MAP and HR in the anaesthetized rat. Microinjection of hcrt-1 (0.5-2.5 pmol) into the region of magnocellular reticular nucleus elicited a dose-dependent increase in HR, with little or no change in MAP. Administration (i.v.) of the muscarinic receptor antagonist atropine methyl bromide significantly attenuated ( approximately 62%) the HR response whereas, the total autonomic blockade abolished the HR response. Finally, unilateral or bilateral microinjection of hcrt-1 into the magnocellular reticular nucleus significantly attenuated the reflex bradycardia resulting from the activation of the baroreflex following the increase in MAP from an iv injection of phenylephrine. These data suggest that hcrt-1 in the RVMM region activates neuronal circuits that both inhibit vagal activity and increase sympathetic activity to the heart, and that it alters the excitability of central circuits that reflexly control the circulation.


Peripheral and central proinflammatory cytokine response to a severe acute stressor.

  • Kevin A O'Connor‎ et al.
  • Brain research‎
  • 2003‎

The role of proinflammatory cytokines in the response to acute stressor exposure has received recent attention. Exposure to a single session of inescapable shock (IS) induces peripheral and central proinflammatory cytokines. Other stressors also increase expression of proinflammatory cytokine mRNA and/or protein in various tissues. However, the induction of central and peripheral proinflammatory cytokines by stressors remains controversial and the pattern of cytokine induction is not consistent across stressors. The present experiments sought to examine the pattern of the proinflammatory cytokine response to a stressor known to cause elevations of IL-1beta protein. mRNA expression for three proinflammatory cytokines, IL-1beta, TNF-alpha and IL-6, and IL-1beta protein was examined after IS. IS increases IL-1beta mRNA and/or protein in a variety of tissues, including hypothalamus, hippocampus, pituitary and spleen. Furthermore, IS concomitantly alters IL-1beta mRNA and protein in hypothalamus and spleen, while the IL-1beta mRNA increase in pituitary lags behind the increase of IL-1beta protein. Interestingly, IL-1beta mRNA is elevated in hippocampus 4 h after IS, but an increase of IL-1beta protein in hippocampus is not detected. Expression of TNF-alpha and IL-6 mRNA do not increase in response to IS. Indeed, TNF-alpha mRNA expression decreases in cortex, pituitary and liver immediately after IS. These findings suggest that alterations of proinflammatory cytokine expression by stressors, and IS in particular, are region- and cytokine-specific.


Styrylpyrone Derivative (SPD) induces apoptosis in a caspase-7-dependent manner in the human breast cancer cell line MCF-7.

  • Alvin Teck Chien Lee‎ et al.
  • Cancer cell international‎
  • 2003‎

BACKGROUND: Styrylpyrone derivative (SPD) is a plant-derived pharmacologically active compound extracted from Goniothalamus sp. Previously, we have reported that SPD inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death, while having minimal effects on non-malignant cells. Here, we attempt to further elucidate the mode of action of SPD. RESULTS: We found that the intrinsic apoptotic pathway was invoked, with the accumulation of cytosolic cytochrome c and processing of the initiator caspase-9. Cleaved products of procaspase-8 were not detected. Next, the executioner caspase-7 was cleaved and activated in response to SPD treatment. To confirm that apoptosis was induced following caspase-7 activation, the caspase inhibitor Ac-DEVD-CHO was used. Pre-incubation of cells with this inhibitor reversed apoptosis levels and caspase-7 activity in SPD-treated cells to untreated levels. CONCLUSIONS: Taken together, these results suggest SPD as a potent antiproliferative agent on MCF-7 cells by inducing apoptosis in a caspase-7-dependent manner.


Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly.

  • G Rose‎ et al.
  • Experimental gerontology‎
  • 2003‎

The human sirtuin 3 (SIRT3) gene encodes a putative mitochondrial NAD-dependent deacetylase (SIRT3) which belongs to the evolutionary conserved family of sirtuin 2 proteins. Studies in model organisms have demonstrated that SIR2 genes control lifespan, while no data are available regarding a possible role of SIRT3 in human longevity. By analysing the genotype-specific survival function relevant to the G477T marker of SIRT3, we found that in males the TT genotype increases (p=0.0272), while the GT genotype decreases (p=0.0391) survival in the elderly. Since SIRT3 lies in a chromosomal region (11p15.5) where four genes potentially associated with longevity are located (HRAS1, Insulin-like Growth Factor 2, Proinsulin, and Tyrosine Hydroxylase) we tested for linkage-disequilibrium between G477T alleles and alleles of the above genes. The disequilibrium was not significant in any case, thus suggesting that SIRT3 itself, or a gene strictly linked to SIRT3, may have a role in human longevity.


Reduced sodium appetite and increased oxytocin gene expression in mutant mice lacking beta-endorphin.

  • L F Franchini‎ et al.
  • Neuroscience‎
  • 2003‎

Central opioid and oxytocinergic systems have been involved in the regulatory control of sodium appetite. In addition, previous studies support the existence of a functional interaction between opioid peptides and oxytocinergic pathways, and suggest that beta-endorphin neurons would modulate the activity of central oxytocinergic pathways, its pituitary secretion and sodium appetite. To investigate the role of this opioid peptide in the control of oxytocin (OT) synthesis and sodium appetite regulation we used mice with gene dosage-dependent variations in brain beta-endorphin content, expressing either 100%, 50%, or 0% of normal beta-endorphin content. Our results show that beta-endorphin knockout (KO) and heterozygous (HT) mutant mice consume approximately a 50% less 2% NaCl solution compared with wild type mice (WT), after furosemide and low sodium diet treatment. These data suggest that beta-endorphin may facilitate induced sodium appetite, giving new evidence about the role of beta-endorphin on sodium appetite behavior. Our data also indicate that OT mRNA levels evaluated by in situ hybridization significantly increased within the hypothalamic paraventricular nucleus of WT animals after induced sodium ingestion, giving support to former evidence indicating an inhibitory role for central OT in the control of sodium appetite. Moreover, beta-endorphin mutated mice have similar higher levels of OT mRNA expression after the different conditions analyzed: basal, control or experimental, compared with WT mice. Both control HT and KO mice showed higher OT mRNA expression levels than control WT group and these levels did not change after induced sodium intake. Taken together, our data suggest that the reduced sodium ingestion observed in beta-endorphin deficient mice could be due to a higher expression of the OT gene. This conclusion would support the hypothesis that OT inhibits sodium intake and provides new evidence about beta-endorphin modulation of OT synthesis and sodium appetite.


Persistent regional increases in brain-derived neurotrophic factor in the flurothyl model of epileptogenesis are dependent upon the kindling status of the animal.

  • T R Mhyre‎ et al.
  • Neuroscience‎
  • 2003‎

Brain-derived neurotrophic factor (BDNF) appears to be both regulated by and a regulator of epileptogenesis. In the flurothyl (HFE) model of kindling mice exposed to successive flurothyl trials over 8 days express a rapid, long-lasting reduction in generalized seizure threshold and a more slowly evolving change in seizure phenotype in response to subsequent flurothyl exposure. The BDNF genotype of particular mouse strains appears to influence the epileptogenic progression in this model. Thus, we hypothesized that BDNF signaling pathways are altered by flurothyl-induced seizures. Following HFE kindling, fully kindled (eight seizures) adult male C57BI/6J mice had significantly elevated whole brain BDNF levels through at least 28 days after their final seizure. Mice that received only four HFE seizures (not kindled) had elevated BDNF levels, but only at 1 day post-seizure (DPSz), while BDNF levels were not significantly altered in mice receiving just one HFE seizure at any time point studied. Regional expression patterns of BDNF in the hippocampus, hypothalamus, and frontal cortex were also elevated by one DPSz and returned to control values by 14 DPSz in mice that received four HFE seizures. No changes were seen in the cerebellum, striatum, or piriform cortex. In contrast, fully kindled mice had significantly elevated BDNF levels within the hippocampus, hypothalamus, neocortex, and striatum that remained elevated through at least 14 DPSz, while levels were unchanged in the cerebellum and piriform cortex. Regional results were confirmed using anti-BDNF immunohistochemistry (IHC). Despite changes in BDNF levels following HFE kindling, we were unable to demonstrate alterations either in full-length tyrosine kinase receptor B (TrkB) expression (Western blot and IHC) or in truncated TrkB (IHC) expression levels. Together, these data suggest a model of a positive feedback loop involving seizure activity and seizure number and persistently modified BDNF signaling pathways that influences seizure phenotypes within the HFE kindling paradigm. Thus, long-term elevations in BDNF may be responsible in part for epileptogenic processes and the development of human refractory epilepsies.


Effects of corticotropin-releasing factor on plasticity of optically recorded neuronal activity in the substantia gelatinosa of rat spinal cord slices.

  • Hiroshi Ikeda‎ et al.
  • Pain‎
  • 2003‎

We examined the effects of corticotropin-releasing factor (CRF) on plasticity of optically recorded neuronal activity in the substantia gelatinosa (lamina II) of 12-18-day-old rat spinal cord slices stained with a voltage-sensitive dye. Single-pulse test stimulation to the dorsal root that activated A and C fibres evoked prolonged (>100 ms) light-absorption change in the lamina II. This response represents the gross membrane potential change of all elements along the slice depth. After conditioning high-frequency stimulation of A-fibre-activating strength, test stimulus elicited less neuronal activity [-27+/-1% (7), (average+/-SE (n)), P<0.01 (*) at 45-60 min after conditioning]. When CRF (1 microM, 10 min) was applied during conditioning, the neuronal activity was facilitated rather than suppressed [+20+/-3% (5), P<0.05]. CRF alone exhibited insignificant effect [-5+/-1% (4), P=0.2]. In the presence of the inhibitory amino acid antagonists bicuculline (1 microM) and strychnine (0.3 microM) in the perfusate, in contrast, the conditioning facilitated it [+27+/-1% (12)*], and CRF treatment during conditioning inhibited the facilitation dose-dependently [0.1 microM: +18+/-2% (5)*, 1 microM: +13+/-1% (7)*]. Although interneuronal actions might contribute, these results suggest that CRF may have dual effects on excitatory synaptic transmission within the lamina II depending upon cellular conditions: a conversion from the induction of long-term depression to long-term potentiation (LTP), and inhibition of LTP induction. Since the LTP is thought to be responsible at least in part for the persistent pain, CRF could regulate the induction.


Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy.

  • Alena M Lieto‎ et al.
  • Biophysical journal‎
  • 2003‎

Total internal reflection excitation used in combination with fluorescence correlation spectroscopy (TIR-FCS) is a method for characterizing the dynamic behavior and absolute concentrations of fluorescent molecules near or at the interface of a planar substrate and a solution. In this work, we demonstrate for the first time the use of TIR-FCS for examining the interaction kinetics of fluorescent ligands in solution which specifically and reversibly associate with receptors in substrate-supported planar membranes. Fluorescence fluctuation autocorrelation functions were obtained for a fluorescently labeled IgG reversibly associating with the mouse receptor FcgammaRII, which was purified and reconstituted into substrate-supported planar membranes. Data were obtained as a function of the IgG solution concentration, the Fc receptor surface density, the observation area size, and the incident intensity. Best fits of the autocorrelation functions to appropriate theoretical forms gave measures of the average surface density of bound IgG, the local solution concentration of IgG, the kinetic rate constant for surface dissociation, and the rate of diffusion through the depth of the evanescent field. The average number of observed fluorescent molecules, both in solution and bound to the surface, scaled with the solution concentration of IgG, observation area size, and Fc receptor surface density as expected. The dissociation rate constant and rate of diffusion through the evanescent field agree with previous results, and all measured parameters were independent of the incident intensity.


The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells.

  • Agnes Lee Ang‎ et al.
  • The Journal of cell biology‎
  • 2003‎

The AP-1B clathrin adaptor complex plays a key role in the recognition and intracellular transport of many membrane proteins destined for the basolateral surface of epithelial cells. However, little is known about other components that act in conjunction with AP-1B. We found that the Rab8 GTPase is one such component. Expression of a constitutively activated GTP hydrolysis mutant selectively inhibited basolateral (but not apical) transport of newly synthesized membrane proteins. Moreover, the effects were limited to AP-1B-dependent basolateral cargo; basolateral transport of proteins containing dileucine targeting motifs that do not interact with AP-1B were targeted normally despite overexpression of mutant Rab8. Similar results were obtained for a dominant-negative allele of the Rho GTPase Cdc42, previously implicated in basolateral transport but now shown to be selective for the AP-1B pathway. Rab8-GFP was localized to membranes in the TGN-recycling endosome, together with AP-1B complexes and the closely related but ubiquitously expressed AP-1A complex. However, expression of active Rab8 caused a selective dissociation of AP-1B complexes, reflecting the specificity of Rab8 for AP-1B-dependent transport.


A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion.

  • Charles J Russell‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Many viral fusion-mediating glycoproteins couple alpha-helical bundle formation to membrane merger, but have different methods for fusion activation. To study paramyxovirus-mediated fusion, we mutated the SV5 fusion (F) protein at conserved residues L447 and I449, which are adjacent to heptad repeat (HR) B and bind to a prominent cavity in the HRA trimeric coiled coil in the fusogenic six-helix bundle (6HB) structure. These analyses on residues L447 and I449, both in intact F protein and in 6HB, suggest a metamorphic region around these residues with dual structural roles. Mutation of L447 and I449 to aliphatic residues destabilizes the 6HB structure and attenuates fusion activity. Mutation of L447 and I449 to aromatic residues also destabilizes the 6HB structure despite promoting hyperactive fusion, indicating that 6HB stability alone does not dictate fusogenicity. Thus, residues L447 and I449 adjacent to HRB in paramyxovirus F have distinct roles in fusion activation and 6HB formation, suggesting this region is involved in a conformational switch.


LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles.

  • Michael J Wise‎
  • BMC bioinformatics‎
  • 2003‎

The late embryogenesis abundant (LEA) proteins cover a number of loosely related groups of proteins, originally found in plants but now being found in non-plant species. Their precise function is unknown, though considerable evidence suggests that LEA proteins are involved in desiccation resistance. Using a number of statistically-based bioinformatics tools the classification of a large set of LEA proteins, covering all Groups, is reexamined together with some previous findings. Searches based on peptide composition return proteins with similar composition to different LEA Groups; keyword clustering is then applied to reveal keywords and phrases suggestive of the Groups' properties.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: