Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 22, 2025

Neurod6^{tm1(cre)Kan}/Neurod6^{tm1(cre)Kan}

RRID:MGI:4429523 Type: Organism

Proper Citation

RRID:MGI:4429523

Organism Information

URL:

Proper Citation: RRID:MGI:4429523

Description: Allele Detail: Targeted This is a legacy resource.

Species: Mus musculus

Notes: Allele Detail: Targeted This is a legacy resource.

Affected Gene: Neurod6

Genomic Alteration: tm1(cre)Kan

Catalog Number: 4429523

Background: either: B6.129-Neurod6 or (involves: 129S1/Sv * 129X1/SvJ * C57BL/6)

Database: MGI, Mouse Genome Informatics MGI

Database Abbreviation: MGI

Availability: Availability unknown check source stock center

Organism Name: Neurod6^{tm1(cre)Kan}/Neurod6^{tm1(cre)Kan}

Record Creation Time: 20240120T190309+0000

Record Last Update: 20240130T201826+0000

Ratings and Alerts

No rating or validation information has been found for Neurod6^{tm1(cre)Kan}/Neurod6 tm1(cre)Kan

No alerts have been found for Neurod6^{tm1(cre)Kan}/Neurod6^{tm1(cre)Kan}.

Data and Source Information

Source: Integrated Animals

Source Database: MGI, Mouse Genome Informatics MGI

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Jahncke JN, et al. (2024) Inhibitory CCK+ basket synapse defects in mouse models of dystroglycanopathy. eLife, 12.

Miller DS, et al. (2021) Neuronal Dystroglycan regulates postnatal development of CCK/cannabinoid receptor-1 interneurons. Neural development, 16(1), 4.

Fredrickx E, et al. (2020) Ablation of neuronal ADAM17 impairs oligodendrocyte differentiation and myelination. Glia, 68(6), 1148.

Lin AW, et al. (2018) Chemical genetic identification of GAK substrates reveals its role in regulating Na+/K+-ATPase. Life science alliance, 1(6), e201800118.

Tang S, et al. (2017) Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 37(31), 7420.