Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 21, 2025

Khdrbs1^{tm1Rchd}/Khdrbs1^{tm1Rchd}

RRID:MGI:3696370 Type: Organism

Proper Citation

RRID:MGI:3696370

Organism Information

URL:

Proper Citation: RRID:MGI:3696370

Description: Allele Detail: Targeted This is a legacy resource.

Species: Mus musculus

Notes: Allele Detail: Targeted This is a legacy resource.

Phenotype: abnormal skeleton physiology, abnormal maternal nurturing, neoplasm, male infertility, increased bone mass, increased bone mineral density, decreased circulating leptin level, decreased body weight, abnormal osteoblast physiology, abnormal bone marrow development, abnormal bone remodeling, abnormal adipose tissue physiology, perinatal lethality, incomplete penetrance

Affected Gene: Khdrbs1

Genomic Alteration: tm1Rchd

Catalog Number: 3696370

Background: involves: 129S1/Sv * 129X1/SvJ * C57BL/6

Database: MGI, Mouse Genome Informatics MGI

Database Abbreviation: MGI

Availability: Availability unknown check source stock center

Source References: PMID:16362077

Organism Name: Khdrbs1^{tm1Rchd}/Khdrbs1^{tm1Rchd}

Record Creation Time: 20240120T190534+0000

Record Last Update: 20240130T201950+0000

Ratings and Alerts

No rating or validation information has been found for Khdrbs1^{tm1Rchd}/Khdrbs1^{tm1Rchd}.

No alerts have been found for Khdrbs1^{tm1Rchd}/Khdrbs1^{tm1Rchd}.

Data and Source Information

Source: Integrated Animals

Source Database: MGI, Mouse Genome Informatics MGI

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Ghibaudi M, et al. (2023) Age-related changes in layer II immature neurons of the murine piriform cortex. Frontiers in cellular neuroscience, 17, 1205173.

La Rosa P, et al. (2016) Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3'-end processing. eLife, 5.