Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 12, 2025

B6.129S1-Irak3 tm1Flv/J

RRID:IMSR JAX:007016

Type: Organism

Proper Citation

RRID:IMSR_JAX:007016

Organism Information

URL: https://www.jax.org/strain/007016

Proper Citation: RRID:IMSR_JAX:007016

Description: Mus musculus with name B6.129S1-Irak3^{tm1Flv}/J from IMSR.

Species: Mus musculus

Notes: gene symbol note: interleukin-1 receptor-associated kinase 3; mutant strain|congenic

strain: Irak3

Affected Gene: interleukin-1 receptor-associated kinase 3

Genomic Alteration: targeted mutation 1; Richard A Flavell

Catalog Number: JAX:007016

Database: International Mouse Resource Center IMSR, JAX

Database Abbreviation: IMSR

Availability: sperm

Alternate IDs: IMSR_JAX:7016

Organism Name: B6.129S1-Irak3^{tm1Flv}/J

Record Creation Time: 20230509T193253+0000

Record Last Update: 20250412T090416+0000

Ratings and Alerts

No rating or validation information has been found for B6.129S1-Irak3^{tm1Flv}/J.

No alerts have been found for B6.129S1-Irak3^{tm1Flv}/J.

Data and Source Information

Source: Integrated Animals

Source Database: International Mouse Resource Center IMSR, JAX

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Thiel FG, et al. (2023) IRAK3-mediated suppression of pro-inflammatory MyD88/IRAK signaling affects disease severity in acute pancreatitis. Scientific reports, 13(1), 10833.

Lin C, et al. (2023) Ketogenic diet and ?-Hydroxybutyrate alleviate ischemic brain injury in mice via an IRAKM-dependent pathway. European journal of pharmacology, 955, 175933.

Hu Y, et al. (2019) Interleukin-1?-induced IRAK1 ubiquitination is required for TH-GM-CSF cell differentiation in T cell-mediated inflammation. Journal of autoimmunity, 102, 50.

Lyu C, et al. (2018) IRAK-M Deficiency Exacerbates Ischemic Neurovascular Injuries in Experimental Stroke Mice. Frontiers in cellular neuroscience, 12, 504.