Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 15, 2025

y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02657}attP2

RRID:BDSC_27507 Type: Organism

Proper Citation

RRID:BDSC_27507

Organism Information

URL: https://n2t.net/bdsc:27507

Proper Citation: RRID:BDSC_27507

Description: Drosophila melanogaster with name y[1] v[1]; P{y[+t7.7]

v[+t1.8]=TRiP.JF02657}attP2 from BDSC.

Species: Drosophila melanogaster

Notes: Donor: Transgenic RNAi Project

Affected Gene: sNPF-R, UAS, v, y

Genomic Alteration: Chromosome 1, Chromosome 3

Catalog Number: 27507

Database: Bloomington Drosophila Stock Center (BDSC)

Database Abbreviation: BDSC

Availability: available

Alternate IDs: BDSC:27507, BL27507

Organism Name: y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02657}attP2

Record Creation Time: 20240911T222446+0000

Record Last Update: 20250331T211701+0000

Ratings and Alerts

No rating or validation information has been found for y[1] v[1]; $P{y[+t7.7] v[+t1.8]=TRiP.JF02657}$ attP2.

No alerts have been found for y[1] v[1]; $P\{y[+t7.7]$ $v[+t1.8]=TRiP.JF02657\}attP2$.

Data and Source Information

Source: Integrated Animals

Source Database: Bloomington Drosophila Stock Center (BDSC)

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Song T, et al. (2023) Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse. Cell research, 33(6), 434.

Qi W, et al. (2021) A novel satiety sensor detects circulating glucose and suppresses food consumption via insulin-producing cells in Drosophila. Cell research, 31(5), 580.

Wilson KA, et al. (2020) GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Current biology: CB, 30(14), 2749.

Tsao CH, et al. (2018) Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior. eLife, 7.