Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 3, 2025

Pennsylvania State University Huck Institutes High Field Magnetic Resonance Imaging Core Facility

RRID:SCR 024461

Type: Tool

Proper Citation

Pennsylvania State University Huck Institutes High Field Magnetic Resonance Imaging Core Facility (RRID:SCR_024461)

Resource Information

URL: https://www.huck.psu.edu/core-facilities/high-field-magnetic-resonance-imaging-facility

Proper Citation: Pennsylvania State University Huck Institutes High Field Magnetic Resonance Imaging Core Facility (RRID:SCR_024461)

Description: Facility for investigating samples at micrometer scale using in vivo imaging and magnetic resonance microscopy. Facility houses Bruker BioSpec 70/30 horizontal magnet and Agilent 14.1 Tesla vertical magnet.

Synonyms: Huck Institutes' High-Field Magnetic Resonance Imaging Facility

Resource Type: service resource, core facility, access service resource

Keywords: ABRF, Magnetic Resonance Imaging, Magnetic Resonance Microscopy, MRI, fMRI

Funding:

Resource Name: Pennsylvania State University Huck Institutes High Field Magnetic

Resonance Imaging Core Facility

Resource ID: SCR_024461

Alternate IDs: ABRF_2453

Alternate URLs: https://coremarketplace.org/RRID:SCR_024461?citation=1, https://coremarketplace.org/?FacilityID=2453&citation=1

Record Creation Time: 20230922T050237+0000

Record Last Update: 20250503T061148+0000

Ratings and Alerts

No rating or validation information has been found for Pennsylvania State University Huck Institutes High Field Magnetic Resonance Imaging Core Facility.

No alerts have been found for Pennsylvania State University Huck Institutes High Field Magnetic Resonance Imaging Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Chan DC, et al. (2024) Cytokine expression patterns predict suppression of vulnerable neural circuits in a mouse model of Alzheimer's disease. bioRxiv: the preprint server for biology.