Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 11, 2025

University of Pennsylvania Penn Vet Extracellular Vesicle Core Facility

RRID:SCR_022444

Type: Tool

Proper Citation

University of Pennsylvania Penn Vet Extracellular Vesicle Core Facility (RRID:SCR_022444)

Resource Information

URL: https://www.vet.upenn.edu/research/core-resources-facilities/extracellular-vesicle-core

Proper Citation: University of Pennsylvania Penn Vet Extracellular Vesicle Core Facility (RRID:SCR_022444)

Description: Provides comprehensive or selected services in necessary isolation, quantification and characterization of EVs. Isolation of EV is based on size exclusion using high-performance (SEC-HPLC) or gravity fed (e.g. iZon column) liquid chromatography, ultracentrifugation, and/or density gradient ultracentrifugation. Accurately characterizes EV particle size distribution and concentration using resistive pulse sensing techniques (nCS1, Spectradyne, LLC). Immunophenotype can be accomplished using nanoscale flow cytometry and/or chip array (ExoViewTM) techniques. Provides services in training and education for individuals and lab groups in all methods above and study design consultation.

Synonyms: University of Pennsylvania Penn Vet Extracellular Vesicle (EV) Core Facility, Penn Vet Extracellular Vesicle (EV) Core Facility

Resource Type: core facility, access service resource, service resource

Keywords: USEDit, ABRF

Funding:

Resource Name: University of Pennsylvania Penn Vet Extracellular Vesicle Core Facility

Resource ID: SCR_022444

Alternate IDs: ARBF_1441

Alternate URLs: https://coremarketplace.org?citation=1&FacilityID=1441

Record Creation Time: 20220602T050140+0000

Record Last Update: 20250411T060238+0000

Ratings and Alerts

No rating or validation information has been found for University of Pennsylvania Penn Vet Extracellular Vesicle Core Facility.

No alerts have been found for University of Pennsylvania Penn Vet Extracellular Vesicle Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Palumbos SD, et al. (2024) Autophagic stress activates distinct compensatory secretory pathways in neurons. bioRxiv: the preprint server for biology.

Gasser MT, et al. (2024) Membrane vesicles can contribute to cellulose degradation by Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms. bioRxiv: the preprint server for biology.