Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 26, 2025

Texas A and M University Laboratory for Synthetic Biologic Interactions Core Facility

RRID:SCR_022287

Type: Tool

Proper Citation

Texas A and M University Laboratory for Synthetic Biologic Interactions Core Facility (RRID:SCR_022287)

Resource Information

URL: https://lsbi.chem.tamu.edu/

Proper Citation: Texas A and M University Laboratory for Synthetic Biologic Interactions Core Facility (RRID:SCR_022287)

Description: Facility housed in Department of Chemistry. Designed to be multi user laboratory supporting major research initiatives. Instruments are currently available on fee for use basis, and others may be made available on case by case considerations.

Abbreviations: LSBI

Synonyms: Laboratory for Synthetic-Biologic Interactions, Texas A&M University Laboratory for Synthetic-Biologic Interactions

Resource Type: core facility, access service resource, service resource

Keywords: USEDit, ABRF, synthetic biologic interactions

Funding:

Availability: open

Resource Name: Texas A and M University Laboratory for Synthetic Biologic Interactions

Core Facility

Resource ID: SCR_022287

Alternate IDs: ABRF_1358

Alternate URLs: https://coremarketplace.org/?FacilityID=1358

Record Creation Time: 20220512T050141+0000

Record Last Update: 20250426T060853+0000

Ratings and Alerts

No rating or validation information has been found for Texas A and M University Laboratory for Synthetic Biologic Interactions Core Facility.

No alerts have been found for Texas A and M University Laboratory for Synthetic Biologic Interactions Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Tran DK, et al. (2023) Structural Metamorphoses of d-Xylose Oxetane- and Carbonyl Sulfide-Based Polymers In Situ during Ring-Opening Copolymerizations. Journal of the American Chemical Society, 145(33), 18560.

Tao X, et al. (2023) Polyethylene Degradation by a Rhodococcous Strain Isolated from Naturally Weathered Plastic Waste Enrichment. Environmental science & technology, 57(37), 13901.

Li H, et al. (2023) Fluorescence Quenching of Humic Substances and Natural Organic Matter by Nitroxide Free Radicals. Environmental science & technology, 57(1), 719.

Smolen JA, et al. (2022) Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues. PNAS nexus, 1(5), pgac235.