Texas A&M Health Science Center Integrated Microscopy and Imaging Laboratory Core Facility

RRID:SCR_021637
Type: Tool

Proper Citation

Texas A&M Health Science Center Integrated Microscopy and Imaging Laboratory Core Facility (RRID:SCR_021637)

Resource Information

URL: https://medicine.tamu.edu/imil

Proper Citation: Texas A&M Health Science Center Integrated Microscopy and Imaging Laboratory Core Facility (RRID:SCR_021637)

Description: Core supports research progress and grant development by encouraging researchers to explore advanced imaging modalities and to incorporate them into their existing research programs. Provides technical expertise and cutting edge microscope systems to support research of faculty and staff of Texas A&M University Health Science Center, Texas A&M University, and all other campuses. IMIL includes six microscopy rooms, supporting facilities, and image processing station. Technical staff is available to train and assist with design, implementation, and analysis of experiments as well as assist in troubleshooting.

Abbreviations: TAMHSC-IMIL

Synonyms: TAMHSC-IMIL-Integrated Microscopy and Imaging Laboratory, Texas A&M Health Science Center TAMHSC-IMIL-Integrated Microscopy and Imaging Laboratory

Resource Type: access service resource, service resource, core facility

Keywords: USEDIt, ABRF, microscope systems, imaging, image processing

Availability: Restricted
Resource Name: Texas A&M Health Science Center Integrated Microscopy and Imaging Laboratory Core Facility

Resource ID: SCR_021637

Alternate IDs: ABRF_1200

Alternate URLs: https://coremarketplace.org/?FacilityID=1200

Ratings and Alerts

No rating or validation information has been found for Texas A&M Health Science Center Integrated Microscopy and Imaging Laboratory Core Facility.

No alerts have been found for Texas A&M Health Science Center Integrated Microscopy and Imaging Laboratory Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 7 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.


Ren Y, et al. (2022) Tumorous expression of NAC1 restrains antitumor immunity through the LDHA-mediated immune evasion. Journal for immunotherapy of cancer, 10(9).


e12780.