Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 25, 2025

Agilent 5300 Fragment Analyzer System

RRID:SCR 019411

Type: Tool

Proper Citation

Agilent 5300 Fragment Analyzer System (RRID:SCR_019411)

Resource Information

URL: https://www.agilent.com/en/product/automated-electrophoresis/fragment-analyzer-systems/5300-fragment-analyzer-system-365721

Proper Citation: Agilent 5300 Fragment Analyzer System (RRID:SCR_019411)

Description: Capillary electrophoresis instrument that can separate up to 48 or 96 samples in parallel. Enables DNA quality control for NGS libraries, gDNA, cfDNA, and large DNA fragments. RNA quality can be checked by this system where small RNA, total RNA, and mRNA vaccines are applicable for RNA integrity, sizing, and quantification analysis.

Resource Type: instrument resource

Keywords: Agilent, Fragment Analyzer System, Instrument Equipment, USEDit,

Funding:

Availability: Commercially available

Resource Name: Agilent 5300 Fragment Analyzer System

Resource ID: SCR_019411

Alternate IDs: Model_Number_5300_Fragment

Alternate URLs: https://www.agilent.com/cs/library/brochures/brochure-reliable-nucleic-acid-

sample-analysis-fragment-analyzer-5994-0414en-agilent.pdf

Record Creation Time: 20220129T080345+0000

Record Last Update: 20250525T031620+0000

Ratings and Alerts

No rating or validation information has been found for Agilent 5300 Fragment Analyzer System.

No alerts have been found for Agilent 5300 Fragment Analyzer System.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Danev N, et al. (2024) Comparative transcriptomic analysis of bovine mesenchymal stromal cells reveals tissue-source and species-specific differences. iScience, 27(2), 108886.

Edelmann M, et al. (2024) Tumor Vessel Normalization via PFKFB3 Inhibition Alleviates Hypoxia and Increases Tumor Necrosis in Rectal Cancer upon Radiotherapy. Cancer research communications, 4(8), 2008.