scanpy
RRID:SCR_018139
Type: Tool

Proper Citation

scanpy (RRID:SCR_018139)

Resource Information

URL: https://github.com/theislab/scanpy

Proper Citation: scanpy (RRID:SCR_018139)

Description: Software Python tool for large scale single cell gene expression data analysis. Integrates analysis possibilities of established R-based frameworks, provides pre processing, visualization, graph-drawing and diffusion maps, clustering, identification of marker genes for clusters via differential expression tests and pseudo temporal ordering via diffusion pseudo time.

Synonyms: Single Cell Analysis in Python

Resource Type: software application, data analysis software, software resource, data processing software

Defining Citation: PMID:29409532

Keywords: Large scale, single cell, gene expression, data analysis, R, pre processing, visualization, graph drawing, diffusion map, clustering, marker gene, differential expression test, bio.tools

Funding Agency: Helmholtz Postdoc Programme, German Research Foundation

Availability: Free, Available for download, Freely available

Resource Name: scanpy

Resource ID: SCR_018139
Alternate IDs: biotools:scanpy, BioTools:scanpy


Record Creation Time: 20220129T080338+0000

Record Last Update: 20240705T054414+0000

Ratings and Alerts

No rating or validation information has been found for scanpy.

No alerts have been found for scanpy.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 149 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Li PL, et al. (2024) Microgel-based carriers enhance skeletal stem cell reprogramming towards immunomodulatory phenotype in osteoarthritic therapy. Bioactive materials, 34, 204.


Dorgau B, et al. (2024) Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level. iScience, 27(4), 109397.


Frantz WT, et al. (2023) Pigment cell progenitor heterogeneity and reiteration of developmental signaling underlie melanocyte regeneration in zebrafish. eLife, 12.


