Agilent 2100 Bioanalyzer Instrument

RRID:SCR_018043
Type: Tool

Proper Citation

Agilent 2100 Bioanalyzer Instrument (RRID:SCR_018043)

Resource Information


Proper Citation: Agilent 2100 Bioanalyzer Instrument (RRID:SCR_018043)

Description: Bioanalyzer system is automated electrophoresis tool that provides a nalytical evaluation of various samples types in many workflows, including next generation sequencing NGS, gene expression, biopharmaceutical, and gene editing research. Digital data is provided in timely manner and delivers assessment of sizing, quantitation, integrity and purity from DNA, RNA, and proteins. Minimal sample volumes are required for accurate result, and data may be exported in many different formats.

Synonyms: 2100 Bioanalyzer (Agilent Technologies)

Resource Type: instrument resource

Keywords: ABRF, bioanalyzer, electrophoresis, DNA, RNA, protein, data analysis, instrument, equipment

Resource Name: Agilent 2100 Bioanalyzer Instrument

Resource ID: SCR_018043

Alternate IDs: Model_Number_2100, SCR_019389, SCR_019389

Ratings and Alerts

No rating or validation information has been found for Agilent 2100 Bioanalyzer Instrument.
No alerts have been found for Agilent 2100 Bioanalyzer Instrument.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 93 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.


Kates HR, et al. (2021) The Effects of Herbarium Specimen Characteristics on Short-Read NGS Sequencing Success in Nearly 8000 Specimens: Old, Degraded Samples Have Lower DNA Yields but Consistent Sequencing Success. Frontiers in plant science, 12, 669064.


Sakib MS, et al. (2021) Intranuclear immunostaining-based FACS protocol from embryonic cortical tissue. STAR protocols, 2(1), 100318.


Abreu de Melo MI, et al. (2021) Human adipose-derived stromal/stem cells are distinct from dermal fibroblasts as evaluated by biological characterization and RNA sequencing. Cell biochemistry and function.


Iepsen EW, et al. (2020) GLP-1 Receptor Agonist Treatment in Morbid Obesity and Type 2 Diabetes Due to Pathogenic Homozygous Melanocortin-4 Receptor Mutation: A Case Report. Cell reports. Medicine, 1(1), 100006.