Waxholm Space Atlas of the Sprague Dawley Rat Brain

RRID:SCR_017124
Type: Tool

Proper Citation
Waxholm Space Atlas of the Sprague Dawley Rat Brain (RRID:SCR_017124)

Resource Information

URL: http://www.nitrc.org/projects/whs-sd-atlas/
Proper Citation: Waxholm Space Atlas of the Sprague Dawley Rat Brain (RRID:SCR_017124)

Description: Open access volumetric atlas of anatomical delineations of rat brain based on structural contrast in isotropic magnetic resonance and diffusion tensor images acquired ex vivo from 80 day old male Sprague Dawley rat at Duke Center for In Vivo Microscopy. Spatial reference is provided by Waxholm Space coordinate system. Location of bregma and lambda are identified as anchors towards stereotaxic space. Application areas include localization of signal in non structural images. Atlas, MRI and DTI volumes, and diffusion tensor data are shared in NIfTI format.

Resource Type: Resource, atlas, waxholm atlas, data or information resource

References: PMID:24726336, PMID:25585022

Keywords: volumetric, atlas, anatomical, delineation, rat, brain, structural, contrast, isotropic, MIR, DTI, male, Sprague Dawley, image

Parent Organization: University of Oslo; Oslo; Norway
Funding Agency: EC Human Brain Project, NCI, NIBIB, Research Council of Norway
Related resources: ITK-SNAP, PMOD Software, Duke University; North Carolina; USA
Availability: Free, Available for download, Freely available
Website Status: Last checked up

Abbreviations: WHS-SD-atlas

Resource Name: Waxholm Space Atlas of the Sprague Dawley Rat Brain

Resource ID: SCR_017124

Ratings and Alerts

No rating or validation information has been found for Waxholm Space Atlas of the Sprague Dawley Rat Brain.

No alerts have been found for Waxholm Space Atlas of the Sprague Dawley Rat Brain.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 14 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Bjerke IE, et al. (2020) Database of literature derived cellular measurements from the murine basal ganglia. Scientific data, 7(1), 211.


Ladd AC, et al. (2017) RNA-seq analyses reveal that cervical spinal cords and anterior motor neurons from amyotrophic lateral sclerosis subjects show reduced expression of mitochondrial DNA-encoded respiratory genes, and rhTFAM may correct this respiratory deficiency. Brain research, 1667, 74-83.


Kuo DP, et al. () Differentiation of the Infarct Core from Ischemic Penumbra within the First 4.5 Hours, Using Diffusion Tensor Imaging-Derived Metrics: A Rat Model. Korean journal of radiology, 18(2), 269-278.