StringTie
RRID:SCR_016323
Type: Tool

Proper Citation

StringTie (RRID:SCR_016323)

Resource Information

URL: https://ccb.jhu.edu/software/stringtie/

Proper Citation: StringTie (RRID:SCR_016323)

Description: Software application for assembling of RNA-Seq alignments into potential transcripts. It enables improved reconstruction of a transcriptome from RNA-seq reads. This transcript assembling and quantification program is implemented in C++.

Resource Type: data analysis software, data processing software, software resource, software application, sequence analysis software

Defining Citation: PMID:25690850, DOI:10.1038/nbt.3122

Keywords: assembling, RNA, sequence, transcript, gene, alignment, reconstruction, read, analysis, process, bio.tools

Funding Agency: the Cancer Prevention and Research Institute of Texas, NHGRI, NIGMS, NHGRI, NCI, NCI

Availability: Open source, Free, Freely available, Available for download

Resource Name: StringTie

Resource ID: SCR_016323

Alternate IDs: biotools:stringtie, OMICS_07226

Ratings and Alerts

No rating or validation information has been found for StringTie.

No alerts have been found for StringTie.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2271 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.


Komine O, et al. (2024) Genetic background variation impacts microglial heterogeneity and disease progression in amyotrophic lateral sclerosis model mice. iScience, 27(2), 108872.


Anderson R, et al. (2024) CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. Molecular cell, 84(4), 702.


Lei J, et al. (2024) Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner. Protein & cell, 15(1), 36.

Yang Z, et al. (2024) SoyMD: a platform combining multi-omics data with various tools for soybean research and breeding. Nucleic acids research, 52(D1), D1639.


Zhao B, et al. (2024) Forebrain excitatory neuron-specific loss of Brpf1 attenuates excitatory synaptic transmission and impairs spatial and fear memory. Neural regeneration research, 19(5), 1133.


Ito M, et al. (2024) IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status. Nature communications, 15(1), 733.

