Nanopolish

RRID:SCR_016157
Type: Tool

Proper Citation

Nanopolish (RRID:SCR_016157)

Resource Information

URL: https://github.com/jts/nanopolish

Proper Citation: Nanopolish (RRID:SCR_016157)

Description: Software package for signal-level analysis of Oxford Nanopore sequencing data.

Resource Type: software application, software resource, data analysis software, data processing software

Keywords: Signal level analysis, Oxford Nanopore, sequencing data, bio.tools

Availability: Free, Available for download, Freely available

Resource Name: Nanopolish

Resource ID: SCR_016157

Alternate IDs: OMICS_16545, biotools:nanopolish

Record Creation Time: 20220129T080329+0000

Record Last Update: 20240616T053919+0000

Ratings and Alerts

No rating or validation information has been found for Nanopolish.
No alerts have been found for Nanopolish.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 332 mentions in open access literature.

Listed below are recent publications. The full list is available at [FDI Lab - SciCrunch.org](https://www.fdi-lab.org).

Kodsi IA, et al. (2024) Tracking SARS-CoV-2 variants during the 2023 flu season and beyond in Lebanon. Virus research, 339, 199289.

Hénault M, et al. (2024) The genomic landscape of transposable elements in yeast hybrids is shaped by structural variation and genotype-specific modulation of transposition rate. eLife, 12.

Lanciano S, et al. (2024) Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. Cell genomics, 4(2), 100498.

Tan L, et al. (2024) Utilization of nanopore direct RNA sequencing to analyze viral RNA modifications. mSystems, 9(2), e0116323.

Boltengagen M, et al. (2024) A single fiber view of the nucleosome organization in eukaryotic chromatin. Nucleic acids research, 52(1), 166.

Yang X, et al. (2023) A large pedigree study confirmed the CGG repeat expansion of RILPL1 Is associated with oculopharyngodistal myopathy. BMC medical genomics, 16(1), 253.

Guo H, et al. (2023) DNA hypomethylation silences anti-tumor immune genes in early prostate cancer and CTCs. Cell, 186(13), 2765.