Avogadro
RRID:SCR_015983
Type: Tool

Proper Citation
Avogadro (RRID:SCR_015983)

Resource Information

URL: http://avogadro.cc/

Proper Citation: Avogadro (RRID:SCR_015983)

Description: Software for semantic chemical editing, visualization, and analysis. It is designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas.

Resource Type: Resource, data analysis software, data processing software, software application, data visualization software, software resource, software toolkit

References: PMID:22889332

Keywords: semantic, optimization, crystallography, chemical, editor, visualization, analysis, molecular, modeling, drug, design, biomolecule, simulation, bio.tools

Funding Agency: Engineering Research Development Center, NSF

Availability: Open source, Free, Free to download

Website Status: Last checked up

Resource Name: Avogadro

Resource ID: SCR_015983

Alternate IDs: biotools:avogadro

Ratings and Alerts

No rating or validation information has been found for Avogadro.

No alerts have been found for Avogadro.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 771 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Loganathan Y, et al. (2021) An Insilico evaluation of phytocompounds from Albizia amara and Phyla nodiflora as cyclooxygenase-2 enzyme inhibitors. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.

Sayed GA, et al. (2021) Mitochondrial DNA in Fresh versus Frozen Embryo Culture Media of
Polycystic Ovarian Syndrome Patients Undergoing Invitro Fertilization: A Possible Predictive Marker of a Successful Pregnancy. Pharmacogenomics and personalized medicine, 14, 27-38.

Jahan K, et al. (2021) A convenient approach to synthesize substituted 5-Arylidene-3-m-tolyl thiazolidine-2, 4-diones by using morpholine as a catalyst and its theoretical study. PloS one, 16(3), e0247619.

Umar HI, et al. (2021) In-silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. Journal of Taibah University Medical Sciences, 16(2), 162-176.

El-Mageed HRA, et al. (2021) Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: insights from molecular docking study. Structural chemistry, 1-16.
