AMAP
RRID:SCR_015969
Type: Tool

Proper Citation

AMAP (RRID:SCR_015969)

Resource Information

URL: http://code.google.com/p/amap-align/
Proper Citation: AMAP (RRID:SCR_015969)

Description: Source code that performs multiple alignment of peptidic sequences. It utilizes posterior decoding and a sequence-annealing alignment, instead of the traditional progressive alignment method.

Resource Type: Resource, image analysis software, data processing software, source code, alignment software, software application, software resource

References: PMID:17237099

Keywords: software, peptide, sequence, alignment, annealing, bioinformatics, multiple, svn, posterior, decoding

Parent Organization: University of California; Berkeley; USA

Funding Agency: NHGRI, NSF

Availability: Free, Available for download

Website Status: Last checked up

Resource Name: AMAP

Resource ID: SCR_015969

Alternate URLs: http://baboon.math.berkeley.edu/amap/
Ratings and Alerts

No rating or validation information has been found for AMAP.

No alerts have been found for AMAP.

Data and Source Information

Source: [SciCrunch Registry](https://scicrunch.org)

Usage and Citation Metrics

We found 169 mentions in open access literature.

listed below are recent publications. The full list is available at [FDI Lab - SciCrunch.org](https://scicrunch.org).

Libonati R, et al. (2021) Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Scientific reports, 11(1), 4400.

Caron TMF, et al. (2021) Big trees drive forest structure patterns across a lowland Amazon regrowth gradient. Scientific reports, 11(1), 3380.

Sampieri BR, et al. (2021) Molecular diversity within the genus(Annelida, Nereididae) along
the west Atlantic coast: paving the way for integrative taxonomy. PeerJ, 9, e11364.

Scarpassa VM, et al. (2021) Multiple evolutionary lineages for the main vector of Leishmania guyanensis, Lutzomyia umbratilis (Diptera: Psychodidae), in the Brazilian Amazon. Scientific reports, 11(1), 15323.

He X, et al. (2021) Extraction of urban built-up area based on the fusion of night-time light data and point of interest data. Royal Society open science, 8(8), 210838.

