OpenCV
RRID:SCR_015526
Type: Tool

Proper Citation

OpenCV (RRID:SCR_015526)

Resource Information

URL: http://opencv.org

Proper Citation: OpenCV (RRID:SCR_015526)

Description: Computer vision and machine learning software library which provides a common infrastructure for computer vision applications. The algorithms within the library can be used to detect and recognize faces, identify objects, classify human actions in videos, track camera movements and moving objects, extract 3D models of objects, produce 3D point clouds from stereo cameras, stitch images together to produce a high resolution image of an entire scene, find similar images from an image database, and follow eye movements, recognize scenery and establish markers to overlay it with augmented reality. It has C++, C, Python, Java and MATLAB interfaces.

Synonyms: Open Source Computer Vision Library

Resource Type: software resource, algorithm resource

Keywords: software library, computer vision, machine learning

Availability: Open source, Supported on Windows, Supported on Linux, Supported on Mac OS, Supported on iOS, Supported on Android

Resource Name: OpenCV

Resource ID: SCR_015526

Alternate URLs: https://github.com/opencv

Record Creation Time: 20220129T080326+0000
Ratings and Alerts

No rating or validation information has been found for OpenCV.

No alerts have been found for OpenCV.

Data and Source Information

Source: [SciCrunch Registry](https://scichrome.org)

Usage and Citation Metrics

We found 1517 mentions in open access literature.

Listed below are recent publications. The full list is available at [FDI Lab - SciCrunch.org](https://scichrome.org).

Steemans B, et al. (2024) Protocol to train a support vector machine for the automatic curation of bacterial cell detections in microscopy images. STAR protocols, 5(1), 102868.

Leiva F, et al. (2024) ScabyNet, a user-friendly application for detecting common scab in potato tubers using deep learning and morphological traits. Scientific reports, 14(1), 1277.

Shen K, et al. (2024) Model-Based 3D Gaze Estimation Using a TOF Camera. Sensors (Basel, Switzerland), 24(4).

Yonekura T, et al. (2024) A new mathematical model of phyllotaxis to solve the genuine puzzle spiromonostichy. Journal of plant research, 137(1), 143.

