OpenCV

RRID:SCR_015526
Type: Tool

Proper Citation

OpenCV (RRID:SCR_015526)

Resource Information

URL: http://opencv.org

Proper Citation: OpenCV (RRID:SCR_015526)

Description: Computer vision and machine learning software library which provides a common infrastructure for computer vision applications. The algorithms within the library can be used to detect and recognize faces, identify objects, classify human actions in videos, track camera movements and moving objects, extract 3D models of objects, produce 3D point clouds from stereo cameras, stitch images together to produce a high resolution image of an entire scene, find similar images from an image database, and follow eye movements, recognize scenery and establish markers to overlay it with augmented reality. It has C++, C, Python, Java and MATLAB interfaces.

Resource Type: Resource, software resource, algorithm resource

Keywords: software library, computer vision, machine learning

Availability: Open source, Supported on Windows, Supported on Linux, Supported on MacOS, Supported on iOS, Supported on Android

Website Status: Last checked down

Resource Name: OpenCV

Resource ID: SCR_015526

Alternate URLs: https://github.com/opencv

Ratings and Alerts
No rating or validation information has been found for OpenCV.
No alerts have been found for OpenCV.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 647 mentions in open access literature.

Listed below are recent publications. The full list is available at [FDI Lab - SciCrunch.org](http://www.FDI-Lab.com).

Mitchell E, et al. (2020) Loss of myoepithelial calponin-1 characterizes high-risk ductal carcinoma in situ cases, which are further stratified by T cell composition. Molecular carcinogenesis.

Kvæstad B, et al. (2020) A machine vision system for tracking population behavior of zooplankton in small-scale experiments: a case study on salmon lice (Krøyer, 1838) copepodite population responses to different light stimuli. Biology open, 9(6).

Barbot A, et al. (2020) Liquid seal for compact micropiston actuation at the capillary tip. Science advances, 6(22), eaba5660.

