Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 18, 2025

University of Pennsylvania Center for Molecular Therapy for Cystic Fibrosis

RRID:SCR_015406

Type: Tool

Proper Citation

University of Pennsylvania Center for Molecular Therapy for Cystic Fibrosis (RRID:SCR_015406)

Resource Information

URL: http://www.med.upenn.edu/gtp/

Proper Citation: University of Pennsylvania Center for Molecular Therapy for Cystic Fibrosis (RRID:SCR_015406)

Description: Research center whose focus is on developing effective gene vectors derived from recombinant viruses. Much of their research is in the development of new adenoassociated virus (AAV) vectors, although some of their research involves both adenoviruses and lentiviruses.

Resource Type: disease-related portal, resource, service resource, access service resource, portal, topical portal, data or information resource

Keywords: cystic fibrosis molecular therapy, adenovirus, viral vector

Related Condition: Cystic Fibrosis

Funding: NIDDK P30DK047757

Availability: Available to the research community

Resource Name: University of Pennsylvania Center for Molecular Therapy for Cystic

Fibrosis

Resource ID: SCR_015406

Record Creation Time: 20220129T080325+0000

Record Last Update: 20250418T055425+0000

Ratings and Alerts

No rating or validation information has been found for University of Pennsylvania Center for Molecular Therapy for Cystic Fibrosis .

No alerts have been found for University of Pennsylvania Center for Molecular Therapy for Cystic Fibrosis .

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Aoki S, et al. (2019) An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. eLife, 8.

Klug JR, et al. (2018) Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. eLife, 7.