MACS

RRID: SCR_013291
Type: Tool

Proper Citation

MACS (RRID:SCR_013291)

Resource Information

URL: https://github.com/macs3-project/MACS

Proper Citation: MACS (RRID:SCR_013291)

Description: Software Python package for identifying transcript factor binding sites. Used to evaluate significance of enriched ChIP regions. Improves spatial resolution of binding sites through combining information of both sequencing tag position and orientation. Can be used for ChIP-Seq data alone, or with control sample with increase of specificity.

Abbreviations: MACS

Synonyms: MACS - Model-based Analysis for ChIP-Seq, Model-based Analysis for ChIP-Seq, MACS2

Resource Type: software application, software resource, data analysis software, data processing software

Defining Citation: PMID:18798982, DOI:10.1186/gb-2008-9-9-r137

Keywords: identify, transcript, factor, binding, site, model, based, analysis, CHIP Seq, short, read, sequencer, protein, DNA, bio.tools

Funding Agency: NHGRI, NHGRI, NIDDK

Availability: Free, Available for download, Freely available

Resource Name: MACS

Resource ID: SCR_013291
Alternate IDs: OMICS_00446, biotools:macs

Record Creation Time: 20220129T080315+0000

Record Last Update: 20240616T053722+0000

Ratings and Alerts

No rating or validation information has been found for MACS.

No alerts have been found for MACS.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1083 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Zheng R, et al. (2024) Remodeling of the endothelial cell transcriptional program via paracrine and DNA-binding activities of MPO. iScience, 27(2), 108898.

Zhao H, et al. (2024) Pluripotency state transition of embryonic stem cells requires the turnover of histone chaperone FACT on chromatin. iScience, 27(1), 108537.

