Trinity

RRID:SCR_013048
Type: Tool

Proper Citation

Trinity (RRID:SCR_013048)

Resource Information

URL: http://trinityrnaseq.sourceforge.net/

Proper Citation: Trinity (RRID:SCR_013048)

Description: Software for the efficient and robust de novo reconstruction of transcriptomes from RNA-seq data.

Abbreviations: Trinity

Resource Type: software resource

Defining Citation: [DOI:10.1038/nbt.1883](https://doi.org/10.1038/nbt.1883)

Keywords: bio.tools

Resource Name: Trinity

Resource ID: SCR_013048

Alternate IDs: biotools:trinity, OMICS_01327

Alternate URLs: https://bio.tools/trinity, https://sources.debian.org/src/trinityrnaseq/

Record Creation Time: 20220129T080314+0000

Record Last Update: 20240424T182930+0000

Ratings and Alerts
No rating or validation information has been found for Trinity.

No alerts have been found for Trinity.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 7958 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Frese AN, et al. (2024) Quantitative proteome dynamics across embryogenesis in a model chordate. iScience, 27(4), 109355.

Niu X, et al. (2024) The genome assembly and annotation of the white-lipped tree pit viper Trimeresurus albolabris. GigaByte (Hong Kong, China), 2024, gigabyte106.

Buller-Peralta I, et al. (2024) Comprehensive allostatic load risk index is associated with increased frontal and left parietal white matter hyperintensities in mid-life cognitively healthy adults. Scientific reports, 14(1), 573.

Ma P, et al. (2024) Comparative transcriptome analysis reveals the adaptive mechanisms of halophyte Suaeda dendroides encountering high saline environment. Frontiers in plant
Wang T, et al. (2024) Transcriptome-Wide Identification of Cytochrome P450s in Tea Black Tussock Moth (Dasychira baibarana) and Candidate Genes Involved in Type-II Sex Pheromone Biosynthesis. Insects, 15(2).

Yang Z, et al. (2024) Two horizontally acquired bacterial genes steer the exceptionally efficient and flexible nitrogenous waste cycling in whiteflies. Science advances, 10(5), eadi3105.

