COBRApy
RRID:SCR_012096
Type: Tool

Proper Citation

COBRApy (RRID:SCR_012096)

Resource Information

URL: http://opencobra.sourceforge.net/openCOBRA/Welcome.html

Proper Citation: COBRApy (RRID:SCR_012096)

Description: Software Python package that provides support for basic COnstraint-Based Reconstruction and Analysis (COBRA) methods.

Synonyms: COBRA for Python

Resource Type: software resource

Defining Citation: PMID:23927696, DOI:10.1186/1752-0509-7-74

Keywords: software package, mac os x, unix/linux, windows, python, bio.tools

Resource Name: COBRApy

Resource ID: SCR_012096

Alternate IDs: OMICS_05190, biotools:cobrapy

Alternate URLs: https://bio.tools/cobrapy

Old URLs: https://sources.debian.org/src/python3-cobra/

Record Creation Time: 20220129T080308+0000

Record Last Update: 20240424T182919+0000

Ratings and Alerts
No rating or validation information has been found for COBRApy.

No alerts have been found for COBRApy.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 213 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Coltman BL, et al. (2024) Characterising the metabolic rewiring of extremely slow growing Komagataella phaffii. Microbial biotechnology, 17(1), e14386.

Bordel S, et al. (2024) Genome-scale metabolic model of the versatile bacterium Paracoccus denitrificans Pd1222. mSystems, 9(2), e0107723.

Potter AD, et al. (2023) Transcriptome-guided metabolic network analysis reveals rearrangements of carbon flux distribution in Neisseria gonorrhoeae during neutrophil co-culture. mSystems, 8(4), e0126522.

Gellner G, et al. (2023) Stable diverse food webs become more common when interactions are more biologically constrained. Proceedings of the National Academy of Sciences of the United States of America, 120(31), e2212061120.

Dhatt PS, et al. (2023) Microbial thermogenesis is dependent on ATP concentrations and the protein kinases ArcB, GlnL, and YccC. PLoS biology, 21(10), e3002180.

Bernstein DB, et al. (2023) Evaluating E. coli genome-scale metabolic model accuracy with high-throughput mutant fitness data. Molecular systems biology, 19(12), e11566.