Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 3, 2025

Genetic Resources Core Facility

RRID:SCR_010581 Type: Tool

Proper Citation

Genetic Resources Core Facility (RRID:SCR_010581)

Resource Information

URL: http://grcf.med.jhu.edu

Proper Citation: Genetic Resources Core Facility (RRID:SCR_010581)

Description: Makes DNA sequencing services, Real Time PCR access and custom DNA products available to scientists. It provides automated fluorescent sequencing and oligonucleotides to the Hopkins Community. Using the JHU Finch Server facility staff capture orders, to distribute and store data indefinitely. Data produced using the Applied Biosystems 3730xl DNA Analyzer is then made available for download, for online or offline viewing, and for editing through the conveniences of the web-based JHU Finch Server. The facility also offers oligonucleotides through Sigma-Genosys.

Synonyms: Core DNA Analysis Facility

Resource Type: analysis service resource, production service resource, service resource, biomaterial analysis service, material analysis service

Funding:

Resource Name: Genetic Resources Core Facility

Resource ID: SCR_010581

Alternate IDs: nlx_43888

Old URLs: http://www.daf.jhmi.edu/index.html

Record Creation Time: 20220129T080259+0000

Record Last Update: 20250403T060831+0000

Ratings and Alerts

No rating or validation information has been found for Genetic Resources Core Facility.

No alerts have been found for Genetic Resources Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Zhang T, et al. (2024) Comparison of Shared Class I HLA-bound Non-canonical Neoepitopes between Normal and Neoplastic Tissues of Pancreatic Adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research.

Ang YS, et al. (2016) Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell, 167(7), 1734.