Subject Order-Independent Group ICA

RRID:SCR_009514
Type: Tool

Proper Citation

Subject Order-Independent Group ICA (RRID:SCR_009514)

Resource Information

URL: http://www.nitrc.org/projects/cogicat/

Proper Citation: Subject Order-Independent Group ICA (RRID:SCR_009514)

Description: While the traditional temporally concatenated Group ICA (TC-GICA) adopting three steps of PCA reduction, it could result in inconsistent and variable components when different subject orders were used, both for the group- and individual-level results. Such instability can further cause instable and thus unreliable statistical results. Subject Order-Independent Group ICA (SOI-GICA) aims to fix this problem by producing stable and reliable GICA results. For details please see the paper Subject Order-Independent Group ICA (SOI-GICA) for Functional MRI Data Analysis (Zhang et al., 2010, NeuroImage)(http://dx.doi.org/10.1016/j.neuroimage.2010.03.039). MICA is the toolbox implemented SOI-GICA for convenience of usage.

Abbreviations: SOI-GICA

Resource Type: software resource

Defining Citation: PMID:20338245

Keywords: analyze, gnome, independent component analysis, kde, linux, matlab, microsoft, magnetic resonance, nifti, posix/unix-like, software, statistical operation, win32 (ms windows), windows

Availability: GNU General Public License

Resource Name: Subject Order-Independent Group ICA

Resource ID: SCR_009514
Ratings and Alerts

No rating or validation information has been found for Subject Order-Independent Group ICA.

No alerts have been found for Subject Order-Independent Group ICA.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 17 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Qian A, et al. (2018) Effects of the 2-Repeat Allele of the DRD4 Gene on Neural Networks Associated With the Prefrontal Cortex in Children With ADHD. Frontiers in human neuroscience, 12, 279.

Karunanayaka PR, et al. (2016) Default mode network differences between rigidity- and tremor-predominant Parkinson's disease. Cortex; a journal devoted to the study of the
nervous system and behavior, 81, 239.

