Cancer Imaging Archive (TCIA)

RRID:SCR_008927
Type: Tool

Proper Citation

Cancer Imaging Archive (TCIA) (RRID:SCR_008927)

Resource Information

URL: http://www.cancerimagingarchive.net/

Proper Citation: Cancer Imaging Archive (TCIA) (RRID:SCR_008927)

Description: Archive of medical images of cancer accessible for public download. All images are stored in DICOM file format and organized as Collections, typically patients related by common disease (e.g. lung cancer), image modality (MRI, CT, etc) or research focus. Neuroimaging data sets include clinical outcomes, pathology, and genomics in addition to DICOM images. Submitting Data Proposals are welcomed.

Resource Type: Resource, database, data set, catalog, service resource, storage service resource, image repository, data repository, data or information resource

Keywords: dicom, imaging, ct, pet, pt, x-ray, mri, magnetic resonance, medical, clinical, research, clinical neuroinformatics, computed tomography, dicom, imaging genomics, magnetic resonance, pet, spect, test data, web service, image collection, image

Parent Organization: Frederick National Laboratory for Cancer Research

Related Condition: Cancer

Funding Agency: NCI

Related resources: NIH Data Sharing Repositories, NCI Imaging Data Commons

Availability: Restricted

Website Status: Last checked up
Abbreviations: TCIA

Resource Name: Cancer Imaging Archive (TCIA)

Resource ID: SCR_008927

Alternate IDs: nlx_151749


Ratings and Alerts

No rating or validation information has been found for Cancer Imaging Archive (TCIA).

No alerts have been found for Cancer Imaging Archive (TCIA).

Data and Source Information

Data: Collections

Source: SciCrunch Registry

Usage and Citation Metrics

We found 108 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.


Rossi M, et al. (2021) Comparison of Supervised and Unsupervised Approaches for the Generation of Synthetic CT from Cone-Beam CT. Diagnostics (Basel, Switzerland), 11(8).


Chen L, et al. (2021) Histopathological image and gene expression pattern analysis for predicting molecular features and prognosis of head and neck squamous cell carcinoma. Cancer medicine, 10(13), 4615-4628.