WFU PickAtlas
RRID:SCR_007378
Type: Tool

Proper Citation
WFU PickAtlas (RRID:SCR_007378)

Resource Information
URL: http://fmri.wfubmc.edu/software/PickAtlas

Proper Citation: WFU PickAtlas (RRID:SCR_007378)

Description: A software toolbox that provides a method for generating Region of Interest (ROI) masks based on the Talairach Daemon database. The atlases include Brodmann area, Lobar, Hemisphere, Anatomic Label (gyral anatomy), and Tissue type. The atlases have been extended to the vertex in MNI space, and corrected for the precentral gyrus anomaly. Additional atlases (including non-human atlases) can be added without difficulty.

Abbreviations: PickAtlas

Synonyms: WFU_PickAtlas

Resource Type: data processing software, image processing software, software application, software resource

Defining Citation: PMID:12880848

Keywords: neuroanatomy, cytoarchitecture, fmri, matlab, brain, brain region, talairach daemon, analyze, atlas application, matlab, microsoft, magnetic resonance, posix/unix-like, win32 (ms windows), windows, FASEB list

Funding Agency: NIBIB

Availability: WFU ANSIR License

Resource Name: WFU PickAtlas
Ratings and Alerts

No rating or validation information has been found for WFU PickAtlas.

No alerts have been found for WFU PickAtlas.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1070 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.


Lieberman JM, et al. (2023) Posterior cingulate cortex targeted real-time fMRI neurofeedback recalibrates functional connectivity with the amygdala, posterior insula, and default-mode network in PTSD. Brain and behavior, 13(3), e2883.


U-Din M, et al. (2023) Thermogenic Capacity of Human Supraclavicular Brown Fat and Cold-Stimulated Brain Glucose Metabolism. Metabolites, 13(3).


Do KT, et al. (2022) Intrinsic connectivity within the affective salience network moderates adolescent susceptibility to negative and positive peer norms. Scientific reports, 12(1), 17463.


Sudimac S, et al. (2022) How nature nurtures: Amygdala activity decreases as the result of a one-hour walk in nature. Molecular psychiatry, 27(11), 4446.
