CellProfiler Image Analysis Software

RRID:SCR_007358
Type: Tool

Proper Citation

CellProfiler Image Analysis Software (RRID:SCR_007358)

Resource Information

URL: http://cellprofiler.org

Proper Citation: CellProfiler Image Analysis Software (RRID:SCR_007358)

Description: CellProfiler cell image analysis software is free and open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. It counts cells and also measures the size, shape, intensity and texture of every cell (and every labeled subcellular compartment) in every image. It was designed for high throughput screening but can perform automated image analysis for images from time-lapse movies and low-throughput experiments. CellProfiler has an increasing number of algorithms to identify and measure properties of neuronal cell types.

Synonyms: Cell Profiler, CellProfiler - cell image analysis software

Resource Type: software resource, image analysis software, data processing software, software application

Defining Citation: PMID:21349861, PMID:17076895, PMID:19014601, PMID:19188593

Keywords: high-throughput, high content imaging, software, image, cell, phenotype, measurement, subcellular, intensity, size, shape, analysis, algorithm

Funding Agency: NIGMS , NIGMS , NHGRI

Availability: Open source, Free, Available for download, Acknowledgement requested

Resource Name: CellProfiler Image Analysis Software
Ratings and Alerts

No rating or validation information has been found for CellProfiler Image Analysis Software.

No alerts have been found for CellProfiler Image Analysis Software.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1658 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.


Giridharan SSP, et al. (2022) Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes. eLife, 11.


Long M, et al. (2022) DGAT1 activity synchronizes with mitophagy to protect cells from metabolic rewiring by iron depletion. The EMBO journal, e109390.