CellProfiler Image Analysis Software

RRID:SCR_007358
Type: Tool

Proper Citation

CellProfiler Image Analysis Software (RRID:SCR_007358)

Resource Information

URL: http://cellprofiler.org

Proper Citation: CellProfiler Image Analysis Software (RRID:SCR_007358)

Description: Software tool to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. It counts cells and also measures the size, shape, intensity and texture of every cell (and every labeled subcellular compartment) in every image. It was designed for high throughput screening but can perform automated image analysis for images from time-lapse movies and low-throughput experiments. CellProfiler has an increasing number of algorithms to identify and measure properties of neuronal cell types.

Synonyms: Cell Profiler, CellProfiler - cell image analysis software

Resource Type: software application, software resource, data processing software, image analysis software

Defining Citation: PMID:21349861, PMID:17076895, PMID:19014601, PMID:19188593

Keywords: high-throughput, high content imaging, software, image, cell, phenotype, measurement, subcellular, intensity, size, shape, analysis, algorithm

Funding Agency: NIGMS, NIGMS, NHGRI

Availability: Free, Available for download, Freely available

Resource Name: CellProfiler Image Analysis Software

Resource ID: SCR_007358
Ratings and Alerts

No rating or validation information has been found for CellProfiler Image Analysis Software.

No alerts have been found for CellProfiler Image Analysis Software.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2499 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Alve S, et al. (2024) DLL4/Notch3/WNT5B axis mediates bidirectional prometastatic crosstalk between melanoma and lymphatic endothelial cells. JCI insight, 9(1).

Houston J, et al. (2024) Phospho-KNL-1 recognition by a TPR domain targets the BUB-1-

Brunnthal L, et al. (2024) Intrahepatic neutrophil accumulation and extracellular trap formation are associated with posthepatectomy liver failure. Hepatology communications, 8(1).

