BEDTools

RRID:SCR_006646
Type: Tool

Proper Citation

BEDTools (RRID:SCR_006646)

Resource Information

URL: https://github.com/arq5x/bedtools2

Proper Citation: BEDTools (RRID:SCR_006646)

Description: A powerful toolset for genome arithmetic allowing one to address common genomics tasks such as finding feature overlaps and computing coverage. Bedtools allows one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic file formats such as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g., intersect two interval files), quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

Resource Type: Resource, software resource

References: PMID:20110278

Keywords: genomics, bed, sam, bam, overlap, sequencing, intersect, coverage, gff, vcf, bedgraph, interval, genome arithmetic, bio.tools

Related resources: Hydra, pybedtools

Availability: GNU General Public License, v2, Acknowledgement requested

Website Status: Last checked up

Abbreviations: BEDTools

Resource Name: BEDTools
Resource ID: SCR_006646

Alternate IDs: OMICS_01159, biotools:bedtools

Alternate URLs: https://code.google.com/p/bedtools/, https://bio.tools/bedtools

Ratings and Alerts

No rating or validation information has been found for BEDTools.

No alerts have been found for BEDTools.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3386 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Dunican DS, et al. (2020) Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. BMC biology, 18(1), 25.

Sanford EM, et al. (2020) Gene regulation gravitates toward either addition or multiplication when combining the effects of two signals. eLife, 9.
Ha TW, et al. (2020) Characterization of Endoplasmic Reticulum (ER) in Human Pluripotent Stem Cells Revealed Increased Susceptibility to Cell Death upon ER Stress. Cells, 9(5).