Jalview

RRID:SCR_006459
Type: Tool

Proper Citation

Jalview (RRID:SCR_006459)

Resource Information

URL: http://www.jalview.org/

Description: A free program for multiple sequence alignment editing, visualisation and analysis that is available in two forms: a lightweight Java applet for use in web applications, and a powerful desktop application that employs web services for sequence alignment, secondary structure prediction and the retrieval of alignments, sequences, annotation and structures from public databases and any DAS 1.53 compliant sequence or annotation server. Use it to view and edit sequence alignments, analyse them with phylogenetic trees and principal components analysis (PCA) plots and explore molecular structures and annotation. Jalview has built in DNA, RNA and protein sequence and structure visualisation and analysis capabilities. It uses Jmol to view 3D structures, and VARNA to display RNA secondary structure.

Resource Name: Jalview
Proper Citation: Jalview (RRID:SCR_006459)
Resource Type: Resource, software resource
Keywords: edit, analysis, annotation, multiple sequence alignment, wysiwyg
Resource ID: SCR_006459
Parent Organization: University of Dundee; Scotland; United Kingdom
Funding Agency: BBSRC
References: [PMID: 19151095](https://www.ncbi.nlm.nih.gov/pubmed/19151095)
Availability: GNU General Public License, v3, Acknowledgement requested

Website Status: Last checked up

Alternate IDs: OMICS_00885

Abbreviations: Jalview

Mentions Count: 1353

Ratings and Alerts

No rating or validation information has been found for Jalview.

No alerts have been found for Jalview.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1353 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch Infrastructure.

Hickman AB, et al. (2020) Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. eLife, 9.

