3D Slicer

RRID:SCR_005619
Type: Tool

Proper Citation

3D Slicer (RRID:SCR_005619)

Resource Information

URL: http://slicer.org/

Proper Citation: 3D Slicer (RRID:SCR_005619)

Description: A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Abbreviations: Slicer

Synonyms: Slicer, 3D Slicer: A multi-platform free and open source software package for visualization and medical image computing, 3D Slicer, 3DSlicer

Resource Type: data visualization software, software application, image analysis software, data processing software, software resource

Keywords: birn, diffusion, functional, na-mic (ncbc), nifti-1 support, registration, segmentation, visualization, volume, warping

Funding Agency: NIH, NCRR, NIBIB, NCI, US Army, Telemedicine and Advanced Technology Research Center

Availability: 3D Slicer License
Resource Name: 3D Slicer
Resource ID: SCR_005619
Alternate IDs: nif-0000-00256
Alternate URLs: http://www.nitrc.org/projects/slicer
Record Creation Time: 20220129T080231+0000
Record Last Update: 20240817T053441+0000

Ratings and Alerts

- 4.5 / 5 (6 votes) Rated at NITRC http://www.nitrc.org/projects/slicer

No alerts have been found for 3D Slicer.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1438 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Vu MT, et al. (2024) Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. Neuron, 112(6), 909.

Tan XZ, et al. (2024) Decoding tumor stage by peritumoral and intratumoral radiomics in resectable esophageal squamous cell carcinoma. Abdominal radiology (New York), 49(1), 301.

Jarraya M, et al. (2024) Dual energy computed tomography cannot effectively differentiate between calcium pyrophosphate and basic calcium phosphate diseases in the clinical
setting. Osteoarthritis and cartilage open, 6(1), 100436.

Majumder S, et al. (2024) State of the art: radiomics and radiomics-related artificial intelligence on the road to clinical translation. BJR open, 6(1), tzad004.

Li Y, et al. (2024) A deep learning model integrating multisequence MRI to predict EGFR mutation subtype in brain metastases from non-small cell lung cancer. European radiology experimental, 8(1), 2.

Cheng H, et al. (2024) Comparison of Anterior Center-Edge Angle Measured From the Acetabular Sourcil Versus the Anterior Bone-Edge of the Acetabulum: A Descriptive Laboratory Study. Orthopaedic journal of sports medicine, 12(1), 23259671231221295.

Pai I, et al. (2024) The impact of the size and angle of the cochlear basal turn on translocation of a pre-curved mid-scala cochlear implant electrode. Scientific reports, 14(1), 1024.

Tran MC, et al. (2024) Quantifying heterogeneity in an animal model of acute respiratory distress syndrome, a comparison of inspired sinewave technique to computed tomography. Scientific reports, 14(1), 4897.