Jellyfish

RRID: SCR_005491
Type: Tool

Proper Citation

Jellyfish (RRID:SCR_005491)

Resource Information

URL: http://www.genome.umd.edu/jellyfish.html

Description: A software tool for fast, memory-efficient counting of k-mers in DNA. A k-mer is a substring of length k, and counting the occurrences of all such substrings is a central step in many analyses of DNA sequence. JELLYFISH can count k-mers quickly by using an efficient encoding of a hash table and by exploiting the compare-and-swap CPU instruction to increase parallelism. Jellyfish is a command-line program that reads FASTA and multi-FASTA files containing DNA sequences. It outputs its k-mer counts in an binary format, which can be translated into a human-readable text format using the jellyfish dump command.

Resource Name: Jellyfish

Proper Citation: Jellyfish (RRID:SCR_005491)

Resource Type: Resource, software resource

Keywords: c++

Resource ID: SCR_005491

Parent Organization: University of Maryland; Maryland; USA

References: [PMID: 21217122](http://www.ncbi.nlm.nih.gov/pubmed/21217122)

Availability: GNU General Public License

Website Status: Last checked up

Alternate IDs: OMICS_01056
Abbreviations: Jellyfish

Mentions Count: 196

Ratings and Alerts

No rating or validation information has been found for Jellyfish.

No alerts have been found for Jellyfish.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 196 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch Infrastructure.

Choo LQ, et al. (2020) Novel genomic resources for shelled pteropods: a draft genome and target capture probes for Limacina bulimoides, tested for cross-species relevance. BMC

Wu H, et al. (2020) Genome Assembly ofFurther Supports That and Belong to Different Sections. G3 (Bethesda, Md.), 10(2), 455-466.

Renny-Byfield S, et al. (2020) Repetitive DNA content in the maize genome is uncoupled from population stratification at SNP loci. BMC genomics, 21(1), 98.

