Artemis: Genome Browser and Annotation Tool
RRID:SCR_004267
Type: Tool

Proper Citation

Artemis: Genome Browser and Annotation Tool (RRID:SCR_004267)

Resource Information

URL: http://www.sanger.ac.uk/resources/software/artemis/

Description: A free genome browser and annotation tool that allows visualization of sequence features, next generation data and the results of analyses within the context of the sequence, and also its six-frame translation. Artemis is free software and is distributed under the terms of the GNU General Public License. Artemis is written in Java, and is available for UNIX, Macintosh and Windows systems. It can read EMBL and GENBANK database entries or sequence in FASTA, indexed FASTA or raw format. Other sequence features can be in EMBL, GENBANK or GFF format.

Resource Name: Artemis: Genome Browser and Annotation Tool

Proper Citation: Artemis: Genome Browser and Annotation Tool (RRID:SCR_004267)

Resource Type: Resource, software resource

Keywords: training tool, genome browser, gene annotation, java

Resource ID: SCR_004267

Parent Organization: Wellcome Trust Sanger Institute; Hinxton; United Kingdom

Funding Agency: Wellcome Trust

Related resources: DNAPlotter

References: PMID: 11120685

Availability: Free
Website Status: Last checked up

Alternate IDs: nlx_28554, OMICS_00903

Abbreviations: Artemis

Mentions Count: 147

Ratings and Alerts

No rating or validation information has been found for Artemis: Genome Browser and Annotation Tool.

No alerts have been found for Artemis: Genome Browser and Annotation Tool.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 147 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch Infrastructure.


Ciok A, et al. (2019) Benefits and Drawbacks of Harboring Plasmid pP32BP2, Identified in


Giordano C, et al. (2019) Reduced Fitness Costs of Compared to Mutated in Isogenic Colistin-Resistant KPC-3-Producing Klebsiella pneumoniae. mSphere, 4(6).


Li J, et al. (2019) Phase evolution of conversion-type electrode for lithium ion batteries. Nature communications, 10(1), 2224.

