Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 19, 2025

BTMORPH

RRID:SCR_003566 Type: Tool

Proper Citation

BTMORPH (RRID:SCR_003566)

Resource Information

URL: https://bitbucket.org/btorb/btmorph

Proper Citation: BTMORPH (RRID:SCR_003566)

Description: Small Python library containing a data structure and tools to represent and analyze neuronal morphologies stored in the de facto standard SWC format.

Resource Type: software resource, software toolkit, software library

Defining Citation: PMID:9821633

Funding:

Availability: Acknowledgement requested

Resource Name: BTMORPH

Resource ID: SCR_003566

Alternate IDs: nlx_157700

Record Creation Time: 20220129T080219+0000

Record Last Update: 20250514T061250+0000

Ratings and Alerts

No rating or validation information has been found for BTMORPH.

No alerts have been found for BTMORPH.

Data and Source Information

Source: <u>SciCrunch Registry</u>

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Hjorth JJJ, et al. (2021) Predicting Synaptic Connectivity for Large-Scale Microcircuit Simulations Using Snudda. Neuroinformatics, 19(4), 685.

Cervantes EP, et al. (2019) Morphological Neuron Classification Based on Dendritic Tree Hierarchy. Neuroinformatics, 17(1), 147.

Kumaraswamy A, et al. (2019) Adaptations during Maturation in an Identified Honeybee Interneuron Responsive to Waggle Dance Vibration Signals. eNeuro, 6(5).

Torben-Nielsen B, et al. (2014) An efficient and extendable python library to analyze neuronal morphologies. Neuroinformatics, 12(4), 619.