biobambam

RRID:SCR_003308
Type: Tool

Proper Citation

biobambam (RRID:SCR_003308)

Resource Information

URL: https://github.com/gt1/biobambam

Proper Citation: biobambam (RRID:SCR_003308)

Description: Software tools for read pair collation based algorithms on BAM files including:
* bamcollate2: reads BAM and writes BAM reordered such that alignment or collated by query name
* bammarkduplicates: reads BAM and writes BAM with duplicate alignments marked using the BAM flags field
* bammaskflags: reads BAM and writes BAM while masking (removing) bits from the flags column
* bamrecompress: reads BAM and writes BAM with a defined compression setting. This tool is capable of multi-threading.
* bamsort: reads BAM and writes BAM sorted by coordinates or query name
* bamtofastq: reads BAM and writes FastQ; output can be collated or uncollated by query name

Resource Type: software application, software resource, data processing software

Defining Citation: [DOI:10.1186/1751-0473-9-13](https://doi.org/10.1186/1751-0473-9-13)

Keywords: standalone software, bio.tools

Availability: GNU General Public License, v3

Resource Name: biobambam

Resource ID: SCR_003308

Alternate IDs: biotools:biobambam, OMICS_04664

Alternate URLs: https://bio.tools/biobambam, https://sources.debian.org/src/biobambam2/
Ratings and Alerts

No rating or validation information has been found for biobambam.

No alerts have been found for biobambam.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 45 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Claeys A, et al. (2023) Benchmark of tools for in silico prediction of MHC class I and class II genotypes from NGS data. BMC genomics, 24(1), 247.

Valls-Margarit J, et al. (2022) GCAT|Panel, a comprehensive structural variant haplotype
map of the Iberian population from high-coverage whole-genome sequencing. Nucleic acids research, 50(5), 2464.

Srivastava A, et al. (2021) Whole Genome Sequencing Prioritizes CHEK2, EWSR1, and TIAM1 as Possible Predisposition Genes for Familial Non-Medullary Thyroid Cancer. Frontiers in endocrinology, 12, 600682.

