RNAhybrid

RRID: SCR_003252
Type: Tool

Proper Citation

RNAhybrid (RRID:SCR_003252)

Resource Information

- **URL:** http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
- **Proper Citation:** RNAhybrid (RRID:SCR_003252)
- **Description:** Software tool for finding the minimum free energy hybridization of a long and a short RNA. The hybridization is performed in a kind of domain mode, i.e., the short sequence is hybridized to the best fitting part of the long one. The tool is primarily meant as a means for microRNA target prediction.
- **Abbreviations:** RNAhybrid
- **Resource Type:** production service resource, analysis service resource, data analysis service, service resource, software resource
- **Defining Citation:** PMID:15383676, DOI:10.1261/rna.5248604
- **Keywords:** microrna, target prediction, free energy, rna, bio.tools
- **Resource Name:** RNAhybrid
- **Resource ID:** SCR_003252
- **Alternate IDs:** OMICS_00416, biotools:rnahybrid, nif-0000-31412
- **Alternate URLs:** https://bio.tools/rnahybrid, https://sources.debian.org/src/rnahybrid/
- **Record Creation Time:** 20220129T080218+0000
- **Record Last Update:** 20240702T053226+0000
Ratings and Alerts

No rating or validation information has been found for RNAhybrid.

No alerts have been found for RNAhybrid.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 415 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Jia Q, et al. (2024) miR-19b-3p regulated by estrogen controls lipid synthesis through targeting MSMO1 and ELOVL5 in LMH cells. Poultry science, 103(1), 103200.

Estrada K, et al. (2024) Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence. PloS one, 19(1), e0289914.

Molecular biology and evolution, 40(11).

Zheng J, et al. (2023) MicroRNA-989 targets 5-hydroxytryptamine receptor1 to regulate ovarian development and eggs production in Culex pipiens pallens. Parasites & vectors, 16(1), 326.

