RNAhybrid
RRID:SCR_003252
Type: Tool

Proper Citation

RNAhybrid (RRID:SCR_003252)

Resource Information

URL: http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/

Proper Citation: RNAhybrid (RRID:SCR_003252)

Description: Software tool for finding the minimum free energy hybridization of a long and a short RNA. The hybridization is performed in a kind of domain mode, i.e., the short sequence is hybridized to the best fitting part of the long one. The tool is primarily meant as a means for microRNA target prediction.

Abbreviations: RNAhybrid

Resource Type: service resource, production service resource, data analysis service, analysis service resource, software resource

Defining Citation: PMID:15383676, DOI:10.1261/rna.5248604

Keywords: microrna, target prediction, free energy, rna, bio.tools

Resource Name: RNAhybrid

Resource ID: SCR_003252

Alternate IDs: OMICS_00416, biotools:rnahybrid, nif-0000-31412

Alternate URLs: https://bio.tools/rnahybrid, https://sources.debian.org/src/rnahybrid/

Record Creation Time: 20220129T080218+0000

Record Last Update: 20240618T053300+0000
Ratings and Alerts

No rating or validation information has been found for RNAhybrid.

No alerts have been found for RNAhybrid.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 415 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Jia Q, et al. (2024) miR-19b-3p regulated by estrogen controls lipid synthesis through targeting MSMO1 and ELOVL5 in LMH cells. Poultry science, 103(1), 103200.

Estrada K, et al. (2024) Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence. PloS one, 19(1), e0289914.


Molecular biology and evolution, 40(11).


Zheng J, et al. (2023) MicroRNA-989 targets 5-hydroxytryptamine receptor1 to regulate ovarian development and eggs production in Culex pipiens pallens. Parasites & vectors, 16(1), 326.


Shi X, et al. (2023) Combined analysis of mRNA and miRNA reveals the mechanism of pacific white shrimp (Litopenaeus vannamei) under acute alkalinity stress. PloS one, 18(8), e0290157.