ClustalW2

RRID:SCR_002909
Type: Tool

Proper Citation

ClustalW2 (RRID:SCR_002909)

Resource Information

URL: http://www.ebi.ac.uk/Tools/msa/clustalw2/

Description: Command line version of multiple sequence alignment program Clustal for DNA or proteins. Alignment is progressive and considers sequence redundancy. No longer being maintained. Please consider using Clustal Omega instead which accepts nucleic acid or protein sequences in multiple sequence formats NBRF/PIR, EMBL/UniProt, Pearson (FASTA), GDE, ALN/ClustalW, GCG/MSF, RSF.

Resource Name: ClustalW2

Proper Citation: ClustalW2 (RRID:SCR_002909)

Resource Type: Resource, image analysis software, data processing software, alignment software, software application, service resource, software resource

Keywords: multiple, sequence, alignment, cladogram, phylogram, evolution, phylogenetic, tree, protein, nucleic, acid

Resource ID: SCR_002909

Parent Organization: European Bioinformatics Institute, University College Dublin; Dublin; Ireland

Funding Agency: Science Foundation Ireland

Related resources: Clustal Omega, Universal Protein Resource (UniProt), Clustal Omega, VectorBase, TopoSNP, Clustal X

References: PMID:17846036, PMID:20439314
Availability: No longer in service

Website Status: Last checked up

Alternate IDs: nif-0000-30076

Old URLs: http://www.ebi.ac.uk/tools/clustalw/

Mentions Count: 7169

Ratings and Alerts

No rating or validation information has been found for ClustalW2.

No alerts have been found for ClustalW2.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 7169 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch Infrastructure.

Chochlakis D, et al. (2020) subsp. infection in animals of veterinary importance, ticks and biopsy samples. New microbes and new infections, 34, 100652.

Rodríguez Cruz PM, et al. (2020) Congenital myasthenic syndrome due to mutations in MUSK suggests that the level of MuSK phosphorylation is crucial for governing synaptic structure. Human mutation, 41(3), 619-631.

