SRI24 Atlas: Normal Adult Brain Anatomy

RRID: SCR_002551
Type: Tool

Proper Citation

SRI24 Atlas: Normal Adult Brain Anatomy (RRID:SCR_002551)

Resource Information

Proper Citation: SRI24 Atlas: Normal Adult Brain Anatomy (RRID:SCR_002551)

Description: An MRI-based atlas of normal adult human brain anatomy, generated by template-free nonrigid registration from images of 24 normal control subjects. The atlas comprises T1, T2, and PD weighted structural MRI, tissue probability maps (GM, WM, CSF), maximum-likelihood tissue segmentation, DTI-based measures (FA, MD, longitudinal and transversal diffusivity), and two labels maps of cortical regions and subcortical structures. The atlas is provided at 1mm isotropic image resolution in Analyze, NIFTI, and Nrrd format. We are also providing an experimental packaging for use with SPM8.

Resource Type: Resource, atlas, reference atlas, data or information resource

References: PMID:20017133

Keywords: analyze, model, magnetic resonance, nifti, nrrd, neuroanatomy, adult human, brain, mri, dti

Parent Organization: Stanford Research Institute International

Related Condition: Normal

Funding Agency: NIA, NIAAA

Availability: Creative Commons Attribution-ShareAlike License, v3

Website Status: Last checked up
Abbreviations: SRI24 Atlas, SRI24, sri24-atlas

Resource Name: SRI24 Atlas: Normal Adult Brain Anatomy

Resource ID: SCR_002551

Alternate IDs: nlx_155957

Ratings and Alerts

No rating or validation information has been found for SRI24 Atlas: Normal Adult Brain Anatomy.

No alerts have been found for SRI24 Atlas: Normal Adult Brain Anatomy.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 10 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Pfefferbaum A, et al. (2014) Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging
study. Neurobiology of aging, 35(7), 1755-68.

