iBEAT
RRID:SCR_002470
Type: Tool

Proper Citation

iBEAT (RRID:SCR_002470)

Resource Information

URL: http://www.med.unc.edu/bric/ideagroup/free-softwares/libra-longitudinal-infant-brain-processing-package

Description: A toolbox with graphical user interfaces for processing infant brain MR images. Longitudinal (or single-time-point) multimodality (including T1, T2, and FA) (or single-modality) data can be processed using the toolbox. Main functions of the software (step by step) include image preprocessing, brain extraction, tissue segmentation and brain labeling. Linux operating system (64 bit) is required. A workstation or server with memory >8G is recommended for processing many images simultaneously. The graphical user interfaces and overall framework of the software are implemented in MATLAB. The image processing functions are implemented with the combination of C/C++, MATLAB, Perl and Shell languages. Parallelization technologies are used in the software to speed up image processing.

Resource Name: iBEAT

Proper Citation: iBEAT (RRID:SCR_002470)

Resource Type: Resource, image analysis software, data processing software, software application, software resource, software toolkit, image processing software

Keywords: atlas application, atlas data, data resource, image display, information resource, magnetic resonance, registration, segmentation, spatial transformation, visualization, warping, mri, infant, brain

Resource ID: SCR_002470
Parent Organization: University of North Carolina at Chapel Hill School of Medicine; North Carolina; USA

Availability: IBEAT License, Http://www.nitrc.org/include/glossary.php#654

Website Status: Last checked up

Alternate IDs: nlx_155851

Alternate URLs: http://www.nitrc.org/projects/ibeat

Abbreviations: iBEAT

Mentions Count: 8

Ratings and Alerts

- 4.5 / 5 (7 votes) Rated at NITRC http://www.nitrc.org/projects/ibeat

No alerts have been found for iBEAT.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 8 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch Infrastructure.


Kim H, et al. (2016) NEOCIVET: Towards accurate morphometry of neonatal gyrification and
