Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 5, 2024

FH-TET1-pEF

RRID:Addgene_49792 Type: Plasmid

Proper Citation

RRID:Addgene_49792

Plasmid Information

URL: http://www.addgene.org/49792

Proper Citation: RRID:Addgene_49792

Insert Name: Tet methylcytosine dioxygenase 1

Organism: Homo sapiens

Bacterial Resistance: Ampicillin

Defining Citation: PMID:19372391

Vector Backbone Description: Backbone Marker:Invitrogen; Backbone Size:6200; Vector Backbone:pEF1a; Vector Types:Mammalian Expression; Bacterial Resistance:Ampicillin

Comments: Please note that compared to GenBank reference sequence NM_030625.2, the TET1 insert in this plasmid contains a SNP at amino acid 1123. The resulting I1223M amino acid change does not affect TET1 expression or catalytic activity.

Plasmid Name: FH-TET1-pEF

Ratings and Alerts

No rating or validation information has been found for FH-TET1-pEF.

No alerts have been found for FH-TET1-pEF.

Data and Source Information

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Ren J, et al. (2024) TET1 inhibits the migration and invasion of cervical cancer cells by regulating autophagy. Epigenetics, 19(1), 2323751.

Zhong R, et al. (2022) Epigenetic mechanism of L-type calcium channel ?-subunit downregulation in short QT human induced pluripotent stem cell-derived cardiomyocytes with CACNB2 mutation. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, 24(12), 2028.

Zhong R, et al. (2022) Regulation of Ion Channel Function in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Cancer Cell Secretion Through DNA Methylation. Frontiers in cardiovascular medicine, 9, 839104.

Kojima N, et al. (2020) Quantitative analysis of global 5-methyl- and 5hydroxymethylcytosine in TET1 expressed HEK293T cells. Biosensors & bioelectronics, 167, 112472.