pAAV-hSyn-DIO-hM4D(Gi)-mCherry

RRID:Addgene_44362
Type: Plasmid

Proper Citation

RRID:Addgene_44362

Plasmid Information

URL: http://www.addgene.org/44362
Proper Citation: RRID:Addgene_44362
Insert Name: hM4D(Gi)-mCherry
Organism: Homo sapiens
Bacterial Resistance: Ampicillin
Defining Citation: PMID:21364278

Vector Backbone Description: Backbone Size:4818; Vector Backbone:pAAV; Vector Types: AAV, Other, Adeno Associated Viral Vector; Bacterial Resistance: Ampicillin

Comments: These plasmids were generated as part of the Illuminating the Druggable Genome (IDG) program sponsored by the NIH Common Fund. The goal of this program is to identify, gather, and distribute information and resources for proteins that currently are not well-studied yet belong to commonly drug-targeted protein families: protein kinases, non-olfactory G-protein coupled receptors (GPCRs), and ion channels. The IDG program is designed to develop fundamental research tools for understudied proteins, elucidate their function, and disseminate the IDG-related resources and data to the greater scientific community.

Plasmid Name: pAAV-hSyn-DIO-hM4D(Gi)-mCherry

Ratings and Alerts
No rating or validation information has been found for pAAV-hSyn-DIO-hM4D(Gi)-mCherry.

No alerts have been found for pAAV-hSyn-DIO-hM4D(Gi)-mCherry.

Data and Source Information

Source: Addgene

Usage and Citation Metrics

We found 93 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Torres-Rodriguez JM, et al. (2024) The parabrachial to central amygdala pathway is critical to injury-induced pain sensitization in mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 49(3), 508.

, et al. (2023) Reduced thalamic excitation to motor cortical pyramidal tract neurons in parkinsonism. Science advances, 9(34), eadg3038.


et al. (2023) A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination. Nature communications, 14(1), 6758.


et al. (2022) Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Current biology : CB, 32(1), 37.


