pAAV-hSyn-DIO-hM4D(Gi)-mCherry
RRID:Addgene_44362
Type: Plasmid

Proper Citation
RRID:Addgene_44362

Plasmid Information

URL: http://www.addgene.org/44362
Proper Citation: RRID:Addgene_44362
Insert Name: hM4D(Gi)-mCherry
Organism: Homo sapiens
Bacterial Resistance: Ampicillin
Defining Citation: PMID:21364278
Vector Backbone Description: Backbone Size:4818; Vector Backbone:pAAV; Vector Types: AAV, Other, Adeno Associated Viral Vector; Bacterial Resistance: Ampicillin

Comments: These plasmids were generated as part of the Illuminating the Druggable Genome (IDG) program sponsored by the NIH Common Fund. The goal of this program is to identify, gather, and distribute information and resources for proteins that currently are not well-studied yet belong to commonly drug-targeted protein families: protein kinases, non-olfactory G-protein coupled receptors (GPCRs), and ion channels. The IDG program is designed to develop fundamental research tools for understudied proteins, elucidate their function, and disseminate the IDG-related resources and data to the greater scientific community.

Plasmid Name: pAAV-hSyn-DIO-hM4D(Gi)-mCherry
Record Creation Time: 20220422T222229+0000
Record Last Update: 20230719T080528+0000
Ratings and Alerts

No rating or validation information has been found for pAAV-hSyn-DIO-hM4D(Gi)-mCherry.

No alerts have been found for pAAV-hSyn-DIO-hM4D(Gi)-mCherry.

Data and Source Information

Source: Addgene

Usage and Citation Metrics

We found 121 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.


Torres-Rodriguez JM, et al. (2024) The parabrachial to central amygdala pathway is critical to injury-induced pain sensitization in mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 49(3), 508.

Rajebhosale P, et al. (2024) Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons. Research square.


Nakatsuka D, et al. (2024) A novel GABAergic population in the medial vestibular nucleus maintains wakefulness and gates rapid eye movement sleep. iScience, 27(3), 109289.

Martinez de Morentin PB, et al. (2024) A brainstem to hypothalamic arcuate nucleus GABAergic circuit drives feeding. Current biology : CB.

Cai J, et al. (2024) An excitatory projection from the basal forebrain to the ventral tegmental area that underlies anorexia-like phenotypes. Neuron, 112(3), 458.


Chen L, et al. (2023) Reduced thalamic excitation to motor cortical pyramidal tract neurons in parkinsonism. Science advances, 9(34), eadg3038.


