Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 10, 2025

pEGFP-NR2B

RRID:Addgene_17925 Type: Plasmid

Proper Citation

RRID:Addgene_17925

Plasmid Information

URL: http://www.addgene.org/17925

Proper Citation: RRID:Addgene_17925

Insert Name: N-methyl D-aspartate receptor 2B

Organism: Rattus norvegicus

Bacterial Resistance: Ampicillin

Defining Citation: PMID:11897109

Vector Backbone Description: Backbone Size:4716; Vector Backbone:pRK5; Vector Types:Mammalian Expression; Bacterial Resistance:Ampicillin

Comments: Addgene NGS identified a few sequence discrepancies relative to Genbank ID: M91562, but the plasmid is expected to function as described in the associated publication.

Plasmid Name: pEGFP-NR2B

Record Creation Time: 20220422T222031+0000

Record Last Update: 20230915T080728+0000

Ratings and Alerts

No rating or validation information has been found for pEGFP-NR2B.

No alerts have been found for pEGFP-NR2B.

Data and Source Information

Source: Addgene

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Zong P, et al. (2024) TRPM2 enhances ischemic excitotoxicity by associating with PKC?. Cell reports, 43(2), 113722.

Curtis AJ, et al. (2023) Molecular basis of interactions between CaMKII and ?-actinin-2 that underlie dendritic spine enlargement. eLife, 12.

Zong P, et al. (2022) Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron, 110(12), 1944.

Nuwer JL, et al. (2021) Sustained treatment with an ?5 GABA A receptor negative allosteric modulator delays excitatory circuit development while maintaining GABAergic neurotransmission. Neuropharmacology, 197, 108724.

Bagasrawala I, et al. (2017) N-Methyl d-Aspartate Receptor Expression Patterns in the Human Fetal Cerebral Cortex. Cerebral cortex (New York, N.Y. : 1991), 27(11), 5041.