Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 25, 2025

pRK5myc RhoA L63

RRID:Addgene_15900

Type: Plasmid

Proper Citation

RRID:Addgene_15900

Plasmid Information

URL: http://www.addgene.org/15900

Proper Citation: RRID:Addgene_15900

Insert Name: RhoA

Organism: Homo sapiens

Bacterial Resistance: Ampicillin

Defining Citation: PMID:10087266

Vector Backbone Description: Backbone Size:4750; Vector Backbone:pRK5-myc; Vector

Types:Mammalian Expression; Bacterial Resistance:Ampicillin

Comments: Constitutively activated Rho. There is an additional F25N mutation in the sequence. This change greatly facilitated expression of the protein in E.coli. The only known effect of this mutation may be negatively affect the transduction of RhoA signaling to DGK1 kinase. Otherwise the depositing lab have never found any discrepancies with other published work on activity or protein interactions.

Plasmid Name: pRK5myc RhoA L63

Relevant Mutation: Q63L

Record Creation Time: 20220422T221901+0000

Record Last Update: 20220422T222936+0000

Ratings and Alerts

No rating or validation information has been found for pRK5myc RhoA L63.

No alerts have been found for pRK5myc RhoA L63.

Data and Source Information

Source: Addgene

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Pineau J, et al. (2022) Microtubules restrict F-actin polymerization to the immune synapse via GEF-H1 to maintain polarity in lymphocytes. eLife, 11.