Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 27, 2025

Mouse Anti-BACE (b-Site APP Cleaving Enzyme), c-terminus Monoclonal antibody, Unconjugated

RRID:AB_95207 Type: Antibody

Proper Citation

(Millipore Cat# MAB5308, RRID:AB_95207)

Antibody Information

URL: http://antibodyregistry.org/AB_95207

Proper Citation: (Millipore Cat# MAB5308, RRID:AB_95207)

Target Antigen: BACE (b-Site APP Cleaving Enzyme), c-terminus

Host Organism: mouse

Clonality: monoclonal

Comments: seller recommendations: Western Blot; Immunoprecipitation, Western Blotting

Antibody Name: Mouse Anti-BACE (b-Site APP Cleaving Enzyme), c-terminus Monoclonal

antibody, Unconjugated

Description: This monoclonal targets BACE (b-Site APP Cleaving Enzyme), c-terminus

Target Organism: rat, simian, mouse, primate, human

Defining Citation: PMID:17206602

Antibody ID: AB_95207

Vendor: Millipore

Catalog Number: MAB5308

Record Creation Time: 20231110T042348+0000

Record Last Update: 20241115T125627+0000

Ratings and Alerts

No rating or validation information has been found for Mouse Anti-BACE (b-Site APP Cleaving Enzyme), c-terminus Monoclonal antibody, Unconjugated.

No alerts have been found for Mouse Anti-BACE (b-Site APP Cleaving Enzyme), c-terminus Monoclonal antibody, Unconjugated.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Liu L, et al. (2019) A cellular complex of BACE1 and ?-secretase sequentially generates A? from its full-length precursor. The Journal of cell biology, 218(2), 644.

Liu L, et al. (2019) Multiple BACE1 inhibitors abnormally increase the BACE1 protein level in neurons by prolonging its half-life. Alzheimer's & dementia: the journal of the Alzheimer's Association, 15(9), 1183.

Yan XX, et al. (2007) beta-Secretase expression in normal and functionally deprived rat olfactory bulbs: inverse correlation with oxidative metabolic activity. The Journal of comparative neurology, 501(1), 52.