Anti-Tyrosine Hydroxylase Antibody

RRID:AB_90755
Type: Antibody

Proper Citation

(Sigma-Aldrich Cat# AB1542, RRID:AB_90755)

Antibody Information

URL: http://antibodyregistry.org/AB_90755

Proper Citation: (Sigma-Aldrich Cat# AB1542, RRID:AB_90755)

Target Antigen: Tyrosine Hydroxylase

Host Organism: sheep

Clonality: polyclonal

Comments: Applications: IHC, WB
consolidation by curator on 4/22/2017 with AB_11213126

Antibody Name: Anti-Tyrosine Hydroxylase Antibody

Description: This polyclonal targets Tyrosine Hydroxylase

Target Organism: mouse, rat

Antibody ID: AB_90755

Vendor: Sigma-Aldrich

Catalog Number: AB1542

Ratings and Alerts

- Human colon Whole Mount technique staining in Myenteric plexus in Soma shows strong immunostaining. Human colon Whole Mount technique staining in Myenteric plexus in Fibers shows strong immunostaining. Data provided by Brookes lab.
No alerts have been found for Anti-Tyrosine Hydroxylase Antibody.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 137 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Kulesh B, et al. (2023) Quantitative trait loci on chromosomes 9 and 19 modulate All

Ma J, et al. (2023) Topographical organization and morphology of substance P (SP)-immunoreactive axons in the whole stomach of mice. The Journal of comparative neurology, 531(2), 188.

Deng L, et al. (2023) Nav1.7 is essential for nociceptor action potentials in the mouse in a manner independent of endogenous opioids. Neuron, 111(17), 2642.

Beccano-Kelly DA, et al. (2023) Calcium dysregulation combined with mitochondrial failure and electrophysiological maturity converge in Parkinson's iPSC-dopamine neurons. iScience, 26(7), 107044.

Albisetti GW, et al. (2023) Inhibitory Kcnip2 neurons of the spinal dorsal horn control behavioral sensitivity to environmental cold. Neuron, 111(1), 92.

Kokotos AC, et al. (2023) Phosphoglycerate kinase is a central leverage point in Parkinson's Disease driven neuronal metabolic deficits. bioRxiv: the preprint server for biology.