Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 2, 2025

Anti-VAMP 4

RRID:AB_887816 Type: Antibody

Proper Citation

(Synaptic Systems Cat# 136 002, RRID:AB_887816)

Antibody Information

URL: http://antibodyregistry.org/AB_887816

Proper Citation: (Synaptic Systems Cat# 136 002, RRID:AB_887816)

Target Antigen: VAMP 4

Host Organism: rabbit

Clonality: polyclonal

Comments: Applications: WB,IP,ICC,IHC

Antibody Name: Anti-VAMP 4

Description: This polyclonal targets VAMP 4

Target Organism: Human, Rat, Zebrafish, Hamster

Antibody ID: AB_887816

Vendor: Synaptic Systems

Catalog Number: 136 002

Record Creation Time: 20231110T042748+0000

Record Last Update: 20241115T104321+0000

Ratings and Alerts

No rating or validation information has been found for Anti-VAMP 4.

No alerts have been found for Anti-VAMP 4.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Bremner SK, et al. (2023) Phosphorylation of the N-terminus of Syntaxin-16 controls interaction with mVps45 and GLUT4 trafficking in adipocytes. PeerJ, 11, e15630.

Bremner SK, et al. (2022) Pleiotropic effects of Syntaxin16 identified by gene editing in cultured adipocytes. Frontiers in cell and developmental biology, 10, 1033501.

Bakr M, et al. (2021) The vSNAREs VAMP2 and VAMP4 control recycling and intracellular sorting of post-synaptic receptors in neuronal dendrites. Cell reports, 36(10), 109678.

Liu Y, et al. (2019) Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses. The Journal of neuroscience: the official journal of the Society for Neuroscience, 39(31), 6049.

Ibata K, et al. (2019) Activity-Dependent Secretion of Synaptic Organizer Cbln1 from Lysosomes in Granule Cell Axons. Neuron, 102(6), 1184.

Zhang S, et al. (2018) Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell host & microbe, 23(2), 169.