Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 10, 2025

Rabbit Anti-ABCG1 Monoclonal Antibody, Unconjugated, Clone EP1366Y

RRID:AB_867471 Type: Antibody

Proper Citation

(Abcam Cat# ab52617, RRID:AB_867471)

Antibody Information

URL: http://antibodyregistry.org/AB_867471

Proper Citation: (Abcam Cat# ab52617, RRID:AB_867471)

Target Antigen: ABCG1

Host Organism: rabbit

Clonality: monoclonal

Comments: validation status unknown, seller recommendations provided in 2012: Immunocytochemistry; Immunohistochemistry; Western Blot; Immunocytochemistry,

Immunohistochemistry-P, Western Blot

Antibody Name: Rabbit Anti-ABCG1 Monoclonal Antibody, Unconjugated, Clone EP1366Y

Description: This monoclonal targets ABCG1

Target Organism: rat, mouse, human

Clone ID: Clone EP1366Y

Antibody ID: AB_867471

Vendor: Abcam

Catalog Number: ab52617

Record Creation Time: 20241017T000345+0000

Record Last Update: 20241017T013822+0000

Ratings and Alerts

No rating or validation information has been found for Rabbit Anti-ABCG1 Monoclonal Antibody, Unconjugated, Clone EP1366Y.

No alerts have been found for Rabbit Anti-ABCG1 Monoclonal Antibody, Unconjugated, Clone EP1366Y.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Wang X, et al. (2024) TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing cholesterol efflux capacity in macrophage. iScience, 27(6), 109849.

Su JH, et al. (2023) Dual action of macrophage miR-204 confines cyclosporine A-induced atherosclerosis. British journal of pharmacology.

Storti F, et al. (2019) Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. eLife, 8.

Tumurkhuu G, et al. (2018) Chlamydia pneumoniae Hijacks a Host Autoregulatory IL-1? Loop to Drive Foam Cell Formation and Accelerate Atherosclerosis. Cell metabolism, 28(3), 432.