Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 1, 2025

Anti-Desmin (Muscle Cell Marker) Ab-1 Monoclonal Antibody, Unconjugated

RRID:AB_61166 Type: Antibody

Proper Citation

(Lab Vision Cat# MS-376-S1, RRID:AB 61166)

Antibody Information

URL: http://antibodyregistry.org/AB_61166

Proper Citation: (Lab Vision Cat# MS-376-S1, RRID:AB_61166)

Target Antigen: Desmin (Muscle Cell Marker)

Host Organism: mouse

Clonality: monoclonal

Comments: This antibody came from from Lab Vision, now part of Thermo Fisher;

manufacturer recommendations:

Antibody Name: Anti-Desmin (Muscle Cell Marker) Ab-1 Monoclonal Antibody,

Unconjugated

Description: This monoclonal targets Desmin (Muscle Cell Marker)

Target Organism: and chicken, feline, monkey, rat, hamster, simian, canine, cow, baboon,

chicken/avian, cat, bovine, human, dog

Antibody ID: AB_61166

Vendor: Lab Vision

Catalog Number: MS-376-S1

Record Creation Time: 20231110T043909+0000

Record Last Update: 20241115T025628+0000

Ratings and Alerts

No rating or validation information has been found for Anti-Desmin (Muscle Cell Marker) Ab-1 Monoclonal Antibody, Unconjugated.

No alerts have been found for Anti-Desmin (Muscle Cell Marker) Ab-1 Monoclonal Antibody, Unconjugated.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Miller LR, et al. (2022) Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Frontiers in aging neuroscience, 14, 788296.

Lotto J, et al. (2020) Single-Cell Transcriptomics Reveals Early Emergence of Liver Parenchymal and Non-parenchymal Cell Lineages. Cell, 183(3), 702.

Boscolo Sesillo F, et al. (2019) Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell reports, 26(3), 689.