Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 7, 2024

CD140b (PDGFRB) Monoclonal Antibody (APB5), Functional Grade, eBioscience

RRID:AB_469070 Type: Antibody

Proper Citation

(Thermo Fisher Scientific Cat# 16-1402-82, RRID:AB_469070)

Antibody Information

URL: <u>http://antibodyregistry.org/AB_469070</u>

Proper Citation: (Thermo Fisher Scientific Cat# 16-1402-82, RRID:AB_469070)

Target Antigen: CD140b (PDGFRB)

Host Organism: rat

Clonality: monoclonal

Comments: Applications: FN (Assay-Dependent), Neu (Assay-Dependent), Flow (1 µg/test) Consolidation on 1/2020: AB_469070, AB_10115154

Antibody Name: CD140b (PDGFRB) Monoclonal Antibody (APB5), Functional Grade, eBioscience

Description: This monoclonal targets CD140b (PDGFRB)

Target Organism: mouse

Clone ID: Clone APB5

Antibody ID: AB_469070

Vendor: Thermo Fisher Scientific

Catalog Number: 16-1402-82

Ratings and Alerts

No rating or validation information has been found for CD140b (PDGFRB) Monoclonal Antibody (APB5), Functional Grade, eBioscience.

No alerts have been found for CD140b (PDGFRB) Monoclonal Antibody (APB5), Functional Grade, eBioscience.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Hattori Y, et al. (2022) Embryonic Pericytes Promote Microglial Homeostasis and Their Effects on Neural Progenitors in the Developing Cerebral Cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 42(3), 362.

Medler TR, et al. (2018) Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer cell, 34(4), 561.

Crouch EE, et al. (2015) Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(11), 4528.