Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 18, 2025

Rat IgG2a, k

RRID:AB_396799 Type: Antibody

Proper Citation

(BD Biosciences Cat# 557690, RRID:AB_396799)

Antibody Information

URL: http://antibodyregistry.org/AB_396799

Proper Citation: (BD Biosciences Cat# 557690, RRID:AB_396799)

Target Antigen: Rat IgG2a k

Host Organism: rat

Clonality: monoclonal

Comments: vendor suggested use: IgG2a; IgG2a Flow Cytometry; Flow Cytometry; Vendor suggested use: IgG2a; IgG2a Flow Cytometry; Flow Cytometry

Antibody Name: Rat IgG2a, k

Description: This monoclonal targets Rat IgG2a k

Antibody ID: AB_396799

Vendor: BD Biosciences

Catalog Number: 557690

Record Creation Time: 20241016T223823+0000

Record Last Update: 20241016T231606+0000

Ratings and Alerts

No rating or validation information has been found for Rat IgG2a, k.

No alerts have been found for Rat IgG2a, k.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Gerrick ER, et al. (2024) Metabolic diversity in commensal protists regulates intestinal immunity and trans-kingdom competition. Cell, 187(1), 62.

Zeidler JD, et al. (2022) Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience, 25(11), 105431.

Nagao JI, et al. (2022) Pathobiont-responsive Th17 cells in gut-mouth axis provoke inflammatory oral disease and are modulated by intestinal microbiome. Cell reports, 40(10), 111314.

Sasaki T, et al. (2019) Innate Lymphoid Cells in the Induction of Obesity. Cell reports, 28(1), 202.

Himburg HA, et al. (2018) Distinct Bone Marrow Sources of Pleiotrophin Control Hematopoietic Stem Cell Maintenance and Regeneration. Cell stem cell, 23(3), 370.

Tarragó MG, et al. (2018) A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell metabolism, 27(5), 1081.